• 제목/요약/키워드: Large Capacity storage

검색결과 313건 처리시간 0.04초

e-Science 협업 연구를 위한 협업 시스템 비교 분석 (Comparison of Collaboration System for e-Science)

  • 유진승;김법균;오충식;장행진
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.565-568
    • /
    • 2007
  • e-Science는 고성능 컴퓨팅 장비와 첨단 장비, 대용량 데이터, 연구인력 등을 동시에 활용하여 연구생산성을 혁신적으로 향상시켜주는 것으로 e-Science에 있어서 연구자들 간의 협업을 위한 기능 제공은 가장 기초적인 서비스에 속한다. 본 논문에서는 다양한 분야에서 사용되고 있는 주요 협업 시스템들을 e-Science에 필요한 특성들을 중심으로 비교 분석한다. 기술적인 특성 외에도 지원되는 스트림의 수를 비롯한 확장성과 구축/운영 비용도 e-Science를 위한 협업 시스템으로 선정하는데 있어 중요한 항목으로 고려하였다. e-Science 협업 연구에 적합하다고 판단되는 액세스 그리드의 현황과 발전 방향을 소개한다.

  • PDF

SLC/MLC 혼합 플래시 메모리를 이용한 하이브리드 하드디스크 설계 (Designing Hybrid HDD using SLC/MLC combined Flash Memory)

  • 홍성철;신동군
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권7호
    • /
    • pp.789-793
    • /
    • 2010
  • 최근 플래시 메모리 기반 비휘발성 캐시가 저장장치의 성능과 전력 소모 측면에서 효과적인 해법으로 떠오르고 있다. 비휘발성 캐시로 저장장치의 성능을 향상시키고 전력 소모를 줄이기 위해, 가격이 싸고 용량이 큰 multi-level-cell (MLC) 플래시 메모리를 사용하는 것이 좋다. 그러나 MLC 플래시 메모리의 수명은 single-level-cell (SLC) 플래시 메모리보다 훨씬 짧기 때문에 전체 저장장치의 수명이 짧아질 수 있다. 이러한 약점을 최소화하기 위해 SLC 플래시 메모리와 MLC플래시 메모리를 결합한 형태의 비휘발성 캐시를 고려해볼 수 있다. 본 논문에서는 SLC와 MLC를 결합한 플래시 메모리를 버퍼로 사용하는 새로운 하이브리드 하드디스크 구조를 제안한다.

비선형부하에 대한 전해 커패시터의 특성 해석과 커패시턴스 용량 추정 알고리즘 (A Characteristic Analysis and Capacitance Estimation Algorithm of Electrolytic Capacitor for Non-linear Loads)

  • 손진근
    • 한국ITS학회 논문지
    • /
    • 제8권6호
    • /
    • pp.180-186
    • /
    • 2009
  • DC/DC 컨버터 등의 전력변환장치와 같은 비선형부하에 대해 알루미늄 전해 커패시터는 에너지의 일시적 저장이나 전압 평활용으로 많이 사용되고 있다. 그러나 전해 커패시터는 사용 시간이 늘어나면서 온도 상승 및 전해액(electrolyte)의 증발 등으로 인하여 고장이 매우 빈번하게 나타난다. 따라서 본 논문에서는 이러한 사고에 대한 고장모드를 분류하고 이를 진단하기 위한 사전 단계로 전해 커패시터의 주파수 변화에 따른 특성 해석과 이를 바탕으로 한 커패시턴스 용량 추정 알고리즘을 제안하였다. 기본파에 해당하는 저주파의 주파수 분석 결과에 따른 모의 실험의 결과는 제안한 알고리즘의 타당성을 입증하였다.

  • PDF

영상레이다 원시데이터를 이용한 BAQ(Block Adaptive Quantization) 최적화 방법 (An Optimization Method for BAQ(Block Adaptive Quantization) Threshold Table Using Real SAR Raw Data)

  • 임성재;이현익;김세영;남창호
    • 한국군사과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.187-196
    • /
    • 2017
  • The size of raw data has dramatically increased due to the recent trend of Synthetic Aperture Radar(SAR) development plans for high resolution and high definition image acquisition. The large raw data has an impact on satellite operability due to the limitations of storage and transmission capacity. To improve the SAR operability, the SAR raw data shall be compressed before transmission to the ground station. The Block Adaptive Quantization (BAQ) algorithm is one of the data compression algorithm and has been used for a long time in the spaceborne SAR system. In this paper, an optimization method of BAQ threshold table is introduced using real SAR raw data to prevent the degradation of signal quality caused by data compression. In this manner, a new variation estimation strategy and a new threshold method for block type decision are introduced.

Hybrid 인터커넥션 구현을 위한 광전 복합케이블 제작에 관한 연구 (Study on the Photoelectric Composite Cable for Hybrid Interconnection Implementation)

  • 김재열;유관종;박력
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.138-145
    • /
    • 2017
  • With the increasing use of smart electronic devices, the size of the related I/O interface market is increasing rapidly. Demand is also growing for the continuous increase of data and video signals-such as faster data processing speed and data storage capacity-in the smart electronic device input/output interface market. Currently, the POF hybrid cable used in the smart electronic device input / output interface market cannot transmit over a long distance because the optical loss is too large, and the GOF hybrid cable is both vulnerable to bending and other sudden outside changes, and expensive. Therefore, in this study, the design and fabrication of a GOF hybrid cable and fiber guide were carried out in order to develop a cable which can easily withstand external impact, has low optical losses, and meets the demand for continuous data and video signal increase in the smart electronic device input / output interface market.

Assessment of Rainwater Harvesting Potential in Ibadan, Nigeria

  • Lade, Omolara;Oloke, David
    • Environmental Engineering Research
    • /
    • 제18권2호
    • /
    • pp.91-94
    • /
    • 2013
  • Recently Ibadan in southwestern Nigeria has been facing severe water shortage due to the increase of population, social and economic activities. In order to meet the shortfall, attempts to utilize rainwater harvesting (RWH) have been made to provide an alternative source of water supply. A desk study was conducted to review various RWH technologies locally, regionally and globally. A hydrological analysis was also carried out using rainfall data for 30 years from two meteorological stations, with the aim of providing a more sustainable RWH system for water supply to private individuals, organizations, and government agencies. RWH is found to be technically feasible based on the prevailing rainfall pattern with over 90% of households having a rooftop constructed from technically appropriate materials. Results of the study indicate that an average roof of $80m^2$ will collect 82,835 L/yr (45 L/person/day) for a family of five people which is about the required water demand for drinking and cooking purposes. Hence, the capacity of storage tanks and the catchment area required for an all-purpose water supply system based on RWH are quite large. These can be reduced to affordable sizes, by collecting and storing water for cooking and drinking only while non-potable uses are supplemented by water from other sources. However, it must be highlighted that due to the type of roofing material, rainwater should go through proper treatment in order to be used for potable purposes. This study clearly shows that Ibadan city has a good rainwater harvesting potential.

An Efficient Design and Implementation of an MdbULPS in a Cloud-Computing Environment

  • Kim, Myoungjin;Cui, Yun;Lee, Hanku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3182-3202
    • /
    • 2015
  • Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.

MANAGING SPENT NUCLEAR FUEL FROM NONPROLIFERATION, SECURITY AND ENVIRONMENTAL PERSPECTIVES

  • Choi, Jor-Shan
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.231-236
    • /
    • 2010
  • The growth in global energy demand and the increased recognition of the impacts of carbon dioxide emissions from fossil fuel plants have aroused a renewed interest on nuclear energy. Many countries are looking afresh at building more nuclear power stations to deal with the twin problems of global warming and the need for more generating capacity. Many in the nuclear community are also anticipating a significant growth of new nuclear generation in the coming decades. If there is a nuclear renaissance, will the expansion of nuclear power be compatible with global non-proliferation and security? or will it add to the environmental burden from the large inventory of spent nuclear fuel already produced in existing nuclear power reactors? We learn from past peaceful nuclear activities that significant concerns associated with nuclear proliferation and spent-fuel management have resulted in a decrease in public acceptance for nuclear power in many countries. The terrorist attack in the United States (US) on September 11, 2001 also raised concern for security and worry that nuclear materials may fall into the wrong hands. As we increase the use of nuclear power, we must simultaneously reduce the proliferation, security and environmental risks in managing spent-fuel below where they are today.

Domain decomposition for GPU-Based continuous energy Monte Carlo power reactor calculation

  • Choi, Namjae;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2667-2677
    • /
    • 2020
  • A domain decomposition (DD) scheme for GPU-based Monte Carlo (MC) calculation which is essential for whole-core depletion is introduced within the framework of the modified history-based tracking algorithm. Since GPU-offloaded MC calculations suffer from limited memory capacity, employing DDMC is inevitable for the simulation of depleted cores which require large storage to save hundreds of newly generated isotopes. First, an automated domain decomposition algorithm named wheel clustering is devised such that each subdomain contains nearly the same number of fuel assemblies. Second, an innerouter iteration algorithm allowing overlapped computation and communication is introduced which enables boundary neutron transactions during the tracking of interior neutrons. Third, a bank update scheme which is to include the boundary sources in a way to be adequate to the peculiar data structures of the GPU-based neutron tracking algorithm is presented. The verification and demonstration of the DDMC method are done for 3D full-core problems: APR1400 fresh core and a mock-up depleted core. It is confirmed that the DDMC method performs comparably with the standard MC method, and that the domain decomposition scheme is essential to carry out full 3D MC depletion calculations with limited GPU memory capacities.

수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용 (Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials)

  • 임진영;안정석;안중호
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.