한국ITS학회논문지 제8권, 제6호 (2009년 12월) pp. 180~186

비선형부하에 대한 전해 커패시터의 특성 해석과 커패시턴스 용량 추정 알고리즘

A Characteristic Analysis and Capacitance Estimation Algorithm of Electrolytic Capacitor for Non-linear Loads

> 손 진 근* (Jin-Geun Shon)

요 약

DC/DC 컨버터 등의 전력변환장치와 같은 비선형부하에 대해 알루미늄 전해 커패시터는 에너지의 일시적 저장이나 전 압 평활용으로 많이 사용되고 있다. 그러나 전해 커패시터는 사용 시간이 늘어나면서 온도 상승 및 전해액(electrolyte)의 증발 등으로 인하여 고장이 매우 빈번하게 나타난다. 따라서 본 논문에서는 이러한 사고에 대한 고장모드를 분류하고 이 를 진단하기 위한 사전 단계로 전해 커패시터의 주파수 변화에 따른 특성 해석과 이를 바탕으로 한 커패시턴스 용량 추정 알고리즘을 제안하였다. 기본파에 해당하는 저주파의 주파수 분석 결과에 따른 모의 실험의 결과는 제안한 알고리즘의 타 당성을 입증하였다.

Abstract

Due to the large capacity and low cost, electrolytic capacitors with of energy storage and voltage regulation are used for almost all types of non-linear load as the DC/DC converter. Electrolytic capacitor, which is the most of the time affected by the aging effect, plays very important role for the power converter system quality and reliability. Therefore, this paper proposes a new method to detect the changes the capacitance value of an electrolytic capacitor in order to analyze the internal characteristic and worn-out state of an electrolytic capacitor. Simulation results by frequency analysis show the validity of the proposed capacitance estimation algorithm.

Key words: Electrolytic capacitor, non-linear load(power converter system), capacitance value, frequency analysis

* 이 연구는 2009학년도 경원대학교 지원에 의한 결과이며 또한 지식경제부(에기평)의 2008/9년도 '전력산업연구개발사업'의 연구 지원에 의하여 연구 수행된 내용의 일부임.

* 주저자 : 경원대학교 전기공학전공 부교수

* 논문접수일 : 2009년 11월 11일

* 논문심사일 : 2009년 12월 12일

↑ 게재확정일 : 2009년 12월 13일

I.서 론

최근 전력전자 기술의 발달에 따라 컨버터/인버터 등 주문형 전력기기의 사용증대에 의한 비선형부하 의 사용이 지속적으로 증가하고 있다. 전동기 드라 이브 등의 인버터 사용 급증 및 스위칭 전원 등의 비선형 부하의 전력변환 시스템에서는 DC 에너지의 일시적 저장이나 전압 평활화를 위하여 비교적 대용 량이면서 가격이 저렴한 알루미늄 전해 커패시터를 사용하는 추세이다. 그러나 이러한 전해 커패시터는 열화 및 손실의 중대에 따라 전해액의 증발이 가중 되면서 폭발로 이어지는 사고가 빈번하게 발생하게 되며, 이는 전력변환장치의 구성요소 중에서 사고의 비율의 약 60[%]를 차지한다[1,2].

따라서 이러한 사고의 확대 방지와 사고 진단을 위해서는 커패시터 부품에 대한 특성해석 및 커패시 턴스의 용량 추정, 커패시턴스의 내부 파라미터의 계측 등의 진단 기법이 필요하다. 본 논문에서는 이 러한 진단시스템의 구성에 필요한 알루미늄 전해 커 패시터의 고장모드를 분류하고, 이의 커패시터에 대 한 주파수 변화에 따른 특성 해석 및 이를 바탕으로 한 커패시턴스의 용량 추정 알고리즘을 제안하였다. 이의 추정 알고리즘은 전해 커패시터의 등가회로 에 기반하 임피던스의 특성으로부터 저주파 영역에 서는 커패시터의 성분이 지배적(dominant)이며, 약 수 십[kHz]에 해당하는 스위칭 주파수 영역에서는 등가 직렬저항(이하 ESR) 값이 지배적이다. 고주파 영역에서는 등가 직렬인덕턴스(이하 ESL) 값이 지배 적임을 알 수 있다는 점을 기반한 것이다. 모의실험 의 결과 커패시턴스의 용량 산정 식에 근거한 이의 추정 알고리즘이 타당성이 있음을 입증하였다.

Ⅱ. 전해 커패시터의 고장모드와 특성 해석

1. 전해 커패시터의 고장모드

각종 전력변환장치와 같은 비선형 부하에서 전해 커패시터는 에너지의 일시적 저장 및 전압 평활용으 로 많이 사용되는데 이는 전도성 극판의 한쪽을 전 도성 재료인 전해액(electrolyte)을 사용한다는 점이 다른 커패시터와는 다르다. 특히 알루미늄 전해커패 시터의 양극판(anode foil)은 매우 높은 순도의 알루 미늄 박 표면에 산화피막(AL2O3)인 유전체(dielectric) 로 형성되어 있으며, 전해액과 전해지(separator), 그 리고 음극 알루미늄 박(cathode foil)으로 구성되어 있 다. 이때 화학적 방법에 의하여 생성된 산화피막은 매우 얇은 유천체 코팅으로 정류성을 띄고 있으며, 음극에 이러한 산화피막을 채용하면 무극성 커패시

The Journal of Korean Institute of Intelligent Transport Systems 181

터의 구조를 가진다[3].

그러나 이러한 전해 커패시터는 사용시간의 증가 에 따라 열화가 진행되어 전해액의 분출 및 온도 상 승 등으로 인하여 많은 사고를 유발하게 된다. 이러 한 커패시터의 사고를 확인하기 위하여 2002년도에 P.Venet[3]은 미국 MIL-HDBK 217F의 표준[4]에 의하 여 SMPS회로를 구성하여 전력변환장치의 구성요소 별 고장 실험을 수행하였으며, 그 결과 네 가지(전해 커패시터, 반도체 스위치, 인덕터, 다이오드)의 구성 요소에서 전해 커패시터의 사고가 약 60[%]를 차지 하게 됨을 확인하였다. 따라서 SMPS 등의 전력변환 장치에서는 반도체 소자 등의 다른 구성 요소들이 수명을 보장하고 있는 대신에 상대적으로 전해 커패 시터의 수명이 짧아서 시스템의 신뢰성을 매우 악화 시키는 결과를 초래할 수 있다.

<그림 1>은 전해 커패시터의 고장 모드 및 그 요
인에 대한 FTA(fault tree analysis)로 나타낸 것이다
[5-7]. 여기에서 전해 커패시터의 고장 모드는 크게
단락 및 개방회로, 그리고 커패시턴스의 감소 및
ESR의 증가와 누설전류의 증가 등 전기적 성능 악
화를 나눌 수 있다. 단락 및 개방회로는 주로 기계
적 스트레스에 의하며 단락 시에는 산화막의 유전
파괴가 있을 수 있으나 이는 산화막의 신속한 복귀
성능 때문에 전류의 집중이 거의 일어나지 않아 단
락회로의 형성은 매우 드물다.

전해 커패시터의 고장 모드의 대부분은 전기화학 적 반응에 의하여 나타나게 되는데 이는 전해액의 감소 및 전해액 증기분출(vaporization), 양극과 음극 에서의 커패시턴스 감소로 나타나게 되며 이의 요인 으로는 온도 및 전압 그리고 맥동전류 등의 초과에 의해서 발생된다. 특히 온도의 초과는 전해액 성능 과 직접 관련이 있으며 기타 맥동 전류의 증가에 의 하여 온도 상승을 가중시키고 있음을 알 수 있다.

따라서 전해 커패시터의 고장 및 열화의 메커니즘 은 온도 상승에 따른 전해액의 증발(dry up)이 가장 큰 요인이며, 이에 따라 정전용량의 감소 및 tan δ(또 는 ESR)의 증가를 초래한다고 할 수 있으므로 커패 시턴스의 정전용량 감소가 약 40[%]이상으로 이어질 경우에는 이를 수명 말기로 판단하여 고장에 대비하 게 된다[1,2].

2. 전해 커패시터의 특성해석

알루미늄 전해커패시터의 특성 해석 및 주파수 분 석을 위한 등가회로는 <그림 2>와 같이 표현할 수 있다. 여기서 C는 커패시턴스를 나타내고 R_1 은알루 미늄 호일과 터미널 저항, R_2 는 전해질에 기인한 온도 민감 저항, R_{LC} 는 유전체의 누설전류(leakage current) 에 의한 손실저항, ESL는 등가 직렬 인덕턴스를 각각 나타낸다.

<그림 2> 전해 커패시터의 등가회로 <Fig. 2> Equivalent circuit of electrolytic capacitor.

<그림 2>와 같은 전해 커패시터의 등가회로로 부 터 커패시터의 복소 임피던스(*Z_c*)는 주파수 *f*(Hz)와 함께 식 (1)과 같이 표현할 수 있다.

$$Z_{C} = \frac{1}{\frac{1}{R_{LC}} + j2\pi fC} + R_{1} + R_{2} + j2\pi fESL$$
(1)

식 (1)을 정리하여 다시 쓰면 식 (2)와 같이 표현 할 수 있다. 이 식을 이용하여 ESR의 값을 구하면 이는 식 (2)의 좌측부 즉, *Z*_c의 실수부라고 표현할 수 있고 커패시턴스의 용량은 식 (2)의 우측부와 같 이 주파수의 함수 및 *R*_{LC} 유전체 누설전류에 의한 손실 저항과 관련이 있음을 확인할 수 있다.

$$Z_{C} = \left[\frac{R_{LC}}{1 + (2\pi f)^{2} C^{2} R_{LC}^{2}}\right] + R_{1} + R_{2}$$

$$+ \frac{1}{j2\pi f C} \left[1 + \frac{1}{(2\pi f)^{2} C^{2} R_{LC}^{2}}\right] + j\omega ESL$$
(2)

제8권, 제6호(2009년 12월)

즉, <그림 4>와 같은 부스트(또는 벅)컨버터와 같 은 전형적인 전력변환회로에서는 메인 스위치 S의 스위칭 주파수 영역에서 고조파의 관계가 집중되고 있음을 알 수 있다. 따라서 전해 커패시터의 ESR 값 은 스위치 S의 스위칭 주파수 영역에서의 전류 RMS 값에 대한 전압 RMS 값의 비율이라고 할 수 있으며 이의 관계를 식 (3)과 같이 나타내어 구할 수 있다[8].

$$ESR = \frac{V_{sf}}{I_{sf}} \tag{3}$$

여기서, V_{sf} , I_{sf} 는 스위칭 주파수에서의 커패시터 맥동전압 및 전류의 RMS 값을 나타낸다.

또한 <그림 4>와 같이 다이오드 정류기가 포함된 부스트 컨버터의 회로 구성에서 전원전압 V_S의 주파 수가 60[Hz]일 때 정류된 직류전압의 맥동 전압/전류 는 맥동 주파수 120[Hz]의 성분이 포함되어 메인 스 위칭 주파수에 반영되는 이른바 부고조파(Sub-harmonics)의 형태로 나타나게 된다. 따라서 커패시턴스 값을 위한 임피던스(Z_C)_{rf}의 추정은 <그림 3>에 기 반하여 ESR 추정과 유사한 식의 임피던스 관계로 식 (4)와 같이 구할 수 있다.

$$(Z_C)_{rf} = \sqrt{(X_C)_{rf}^2 + ESR^2} = V_{rf}/I_{rf} = (X_C)_{rf}$$
(4)

여기서, rf = 120 [Hz]는 기본 맥동 주파수(ripple frequency)를 의미하며, $(X_C)_{rf} = 1/2\pi (rf)C$ 이다.

따라서 본 논문에서는 위의 알고리즘에 대한 타당 성을 입증하기 위하여 모의실험을 수행하였다. 모의 실험에서는 <그림 4>과 같이 교류 입력전원을 바탕 으로 한 부스트 컨버터의 동작을 PSIM 7.0 툴을 사 용하였다. DC부하단의 맥동 전압과 전류의 계측은 저주파수의 대역통과필터(BPF)를 통과하여 FFT를 수행하도록 하였다. 이때의 시뮬레이션 조건은 다음 과 같다.

• 전원 V_s=20[Vpeak], 60[Hz], 부하저항 : 20[Ω]

- 듀티비 :0.5, MOSFET의 스위칭 주파수 :5[kHz]
- 정류기단 및 DC 출력부의 커패시터 : 6,800[μF] 및 680[μF]/4,700[μF]가변

식 (2)와 같은 임피던스의 특성식을 근거하여 주 파수 변화에 따른 임피던스의 변화 특성을 시뮬레이 션 한 결과는 <그림 3>과 같다. 이때의 ESR 및 ESL 값은 각각 1[Ω], 100[nH]로 선정하였고, 커패시턴스 값은 6,800[uF]로 선정하여 이의 변화 특성을 고찰하 였다. 주파수 가변에 따른 위상변화(deg.)의 결과 그 림에서 알 수 있듯이 커패시터의 임피던스 특성은 120[Hz] 등 저주파 영역에서는 커패시터의 성분이 지배적(dominant)이며, 수[kHz] 또는 수 십 [kHz] 등 의 스위칭 주파수 영역에서는 ESR이 지배적이며, 고 주파 영역에서는 ESL 값이 지배적임을 알 수 있다.

<그림 3> 커패시턴스 6800[uF]일 때의 주파수 특성 <Fig. 3> Frequency Characteristic of electrolytic capacitor (6800[uF])

Ⅲ. 커패시턴스의 용량 추정 알고리즘과 모의실험

전해 커패시터의 복소 임피던스는 식 (2)와 같이 주파수 변동에 따라 그 크기가 달라지게 되며 ESR 값이 지배적이라 할 수 있다. 또한 커패시터 양단의 전압 및 전류(*V_{sf}*,*I_{sf}*)파형은 임의 형태(Arbitrary shape) 의 맥동 성분 파형으로 간주할 수 있고 이는 각각 다른 정현파 성분(고조파)의 합으로 이루어진다. 따 라서 주어진 어느 한 순간에 서로 다른 정현파 성분 의 커패시터 전류 RMS 값과 전압 RMS 값의 비율은 특별한 주파수 성분에 대한 커패시터의 임피던스와 같다고 할 수 있다.

<그림 4> 부스트 컨버터의 시뮬레이션 회로 <Fig. 4> Simulation circuit of boost converter

<그림 5>는 <그림 4>에 대한 부스트 컨버터의 성 능을 검증하기 위하여 DC부하단의 커패시터 맥동 전압과 전류파형을 나타낸 것으로 BPF를 거치기 전 의 파형을 나타내고 있다.

<그림 5> DC출력 커패시터의 맥동 전류/전압 파형 <Fig. 5> Ripple current/voltage waveform of DC output capacitor

<그림 6>은 <그림 4>와 같이 다이오드 정류기가 포함된 AC/DC 및 DC/DC 부스트 컨버터의 시뮬레이 션과 조건에서 커패시터의 용량 추정알고리즘에 대 한 결과이다. 이때의 커패시터는 680[uF]의 용량을 가졌을 때 120[Hz]의 저주파 대역통과 필터(BPF)를 거친 후의 커패시터 맥동 전류 및 전압과형을 각각 나타낸 것이며, 또한 <그림 7>은 <그림 6>의 주파수 분석 결과에 대한 파형이다.

이와 같은 시뮬레이션 결과에 대한 검증은 다음과 같다. 이미 알고 있는 680[uF]에 대한 임피던스는 120[Hz]의 주파수 성분을 대입하면 이는 식 (5)와 같 이 1.95[Ω]의 값을 갖는다. 그리고 <그림 7>의 시뮬 레이션 결과에 대한 FFT의 검증 결과는 식 (6)과 같 이 2.00[Ω]으로 계산되어 이의 오차는 거의 없다고 판정할 수 있으며, 이의 알고리즘 개발에 의하여 전 해 커패시터의 고장 진단시스템의 구성요소로 사용 가능하다고 할 수 있다.

$$(X_C)_{rf} = \frac{1}{2\pi f_{rf}C} = \frac{1}{2\pi \times 120 \times 680 \times 10^{-6}} = 1.95[\Omega]$$
(5)

$$(X_C)_{rf} \stackrel{=}{=} \frac{V_{rf}}{I_{rf}} \stackrel{=}{=} \frac{2.12}{1.06} \stackrel{=}{=} 2.00[\Omega] \tag{6}$$

<그림 7> BPF 통과후 커패시터의 전류/전압 FFT <Fig. 7> FFT results of capacitor current/voltage waveform after passing BPF(680[uF])

마찬가지로 <그림 8>은 앞에서의 조건과 동일하 게 커패시터의 용량추정 알고리즘에 대한 결과이다. 이때의 커패시터는 4,700[uF]의 용량을 가졌을 때 120[Hz]의 저주파 대역통과 필터(BPF)를 거친 후의 커패시터 맥동 전류 및 전압파형을 각각 나타낸 것 이며, 또한 <그림 9>는 <그림 8>의 주파수 분석 결 과에 대한 파형이다.

이에 대한 임피던스의 계산치는 0.28[Ω]의 값을 갖으며 FFT의 검증 결과는 0.34[Ω]으로 계산되어 큰 오차는 거의 없다고 판정할 수 있다. 따라서 전해 커 패시터의 열화 및 고장의 결과는 정전용량의 변화를 초래한다고 할 수 있으며, 커패시턴스의 정전용량 감소가 약 40[%]이상으로 이어질 경우에는 이를 수 명 말기로 판단하는 고장 진단시스템에 도입할 수 있게 된다.

<그림 8> BPF 통과 후의 커패시터 전류/전압 파형 <Fig. 8> Waveform of capacitor current/voltage after passing BPF(4,700[uF])

<그림 9> BPF 통과후 커패시터의 전류/전압 FFT <Fig. 9> FFT results of capacitor current/voltage waveform after passing BPF(4,700[uF])

Vol.8 No.6(2009. 12)

IV.결 론

컨버터 및 인버터 등의 비선형 부하장치에는 전압 의 평활화를 위하여 거의 대부분은 가격이 저렴한 알루미늄 전해 커패시터를 채용한다. 그러나 전해 커패시터의 사용은 서서히 열화가 진행되면서 전해 액이 증발되어 열화 가속 및 폭발 등을 일으키는 주 요 위험 요인으로 작용하는 치명적 단점이 존재하고 있으며 이의 적절한 수명 보장을 위해서는 ESR 추 정 및 커패시터의 용량 추정 등의 고장진단 알고리 즘이 필요하다.

따라서 본 논문에서는 이의 진단시스템 구성에 포 함시킬 수 있는 전해 커패시터의 주파수 변화에 따 른 특성 해석을 고찰하였고 이를 바탕으로 한 커패 시턴스의 용량 추정 알고리즘을 제시하고 그 타당성 을 입증하였다. 이는 전해 커패시터의 등가회로에 기반한 임피던스의 특성으로부터 저주파 영역에서 BPF를 통과시켜 이를 FFT로 분석하여 이의 결과로 부터 커패시터 임피던스를 간단하게 계산할 수 있는 방식이다. 커패시턴스의 임피던스 용량 측정에 대한 모의실험의 결과는 이론적 계산치와 거의 일치하고 있음을 보여 주었으며, 이의 결과는 전해 커패시터 의 고장진단 알고리즘에 적절히 사용 가능함을 보여 주었다.

참고문 헌

- A. M. Imam, T. G. Habetler, R. G. Harly, and D. M. Divan, "LMS based condition monitoring of electrolytic capacitor," *IEEE Trans. Ind. Appl*, vol. 41, no. 6, pp.848-853, Nov. 2005.
- [2] M. L. Gasperi, "Life prediction modeling of bus capacitor in AC variable-frequency drives," *IEEE Trans. Ind. Appl*, vol. 41, no. 6, pp.1430-1435, Nov./Dec. 2005.
- [3] P. Venet, F. Perisse, M. H. El-Hussein1, and G. Rojat, "Realization of a smart electrolytic capacitor circuit," *IEEE Industry Applications Magazine*, no. 1, pp. 16-20, 2002.

- [4]. United States Department of Defense, US MIL-HDBK-217F Reliability Prediction of electronics Equipment, Version F, Notice 2, USA, 1995.
- [5] 기술표준원 신뢰성전문위원회, 알루미늄 전해 커 패시터 해설서 RS C 0005, 산업자원부, 2001. 11.
- [6] Matsushita Electronic Components Co, Technical

guide of aluminum electrolytic capacitors, Mar. 2000.

- [7] http://www.chemi-con.co.jp/e/catalog/aluminum.html
- [8] 손진근, 김진식, "주파수 분석기법을 이용한 전압 평활용 전해 커패시터의 고장진단," 전기학회논 문지, 제58P권, 제2호, pp. 207-213, 2009. 6.

손 진 근 (Shon, Jin-Geun)
1990년 2월 : 숭실대학교 전기공학과 공학사
1992년 2월 : 숭실대학교 전기공학과 공학석사(전력전자전공)
1997년 2월 : 숭실대학교 전기공학과 공학박사(전력전자전공)
2002년 2월 ~2003년 2월: 일본 가고시마대학 해외 Post-Doc.
1997년 3월~현재 : 경원전문대학/경원대학교 전기공학과 교수
관심분야 : 전기품질(Power Quality), 전동기제어, 능동전력필터

186 한국ITS학회논문지

제8권, 제6호(2009년 12월)