• 제목/요약/키워드: Laplacian Prior

검색결과 4건 처리시간 0.014초

Sparse Kernel Regression using IRWLS Procedure

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.735-744
    • /
    • 2007
  • Support vector machine(SVM) is capable of providing a more complete description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse kernel regression(SKR) to overcome a weak point of SVM, which is, the steep growth of the number of support vectors with increasing the number of training data. The iterative reweighted least squares(IRWLS) procedure is used to solve the optimal problem of SKR with a Laplacian prior. Furthermore, the generalized cross validation(GCV) function is introduced to select the hyper-parameters which affect the performance of SKR. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

Sparse Multinomial Kernel Logistic Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2008
  • Multinomial logistic regression is a well known multiclass classification method in the field of statistical learning. More recently, the development of sparse multinomial logistic regression model has found application in microarray classification, where explicit identification of the most informative observations is of value. In this paper, we propose a sparse multinomial kernel logistic regression model, in which the sparsity arises from the use of a Laplacian prior and a fast exact algorithm is derived by employing a bound optimization approach. Experimental results are then presented to indicate the performance of the proposed procedure.

에지개선 필터들의 통계적 분석과 에지검출에 대한 영향 (A Statistical Analysis of Edge Enhancing Filters and Their Effects on Edge Detection)

  • 박순영
    • 한국통신학회논문지
    • /
    • 제18권11호
    • /
    • pp.1635-1644
    • /
    • 1993
  • 본 논문은 에지개선 필터들의 통계적인 특성과 에지 검출을 위한 전처리 연산자로서의 효용성을 분석한다. 분석 대상인 에지개선 필터들로는 비교와 선택을 수행하는 CS 필터, Hachimura와 Kuwahara가 개발한 HK 필터, 그리고 선택성 평균을 출력시키는 SA필터이며 이 필터들은 잡음 제거 능력 및 손상된 에지를 계단 모양의 에지로 개선시키는 역할을 수행하기 때문에 에지 검출기 사용전에 잡음화된 영상을 전처리하는데 효과적으로 사용될 수 있다. 수치해석을 통한 통계적 분석이 에지개선 필터들의 잡음 제거능력을 살펴보기 위하여 수행되며 에지 검출에 대한 전처리 필터링의 영향은 수치해석 방법을 통하여 얻어진 오류확률들을 중심으로 분석된다. 또한 백색잡음에 의하여 손상된 영상에 필터들을 사용하여 전처리를 수행한 후 Sobel 연산자와 LoG 연산자를 사용하여서 에지 검출전에 전처리기로서 사용된 에지개선 필터들은 후처리기로 사용된 에지 검출기의 성능을 향상시킬 수 있다.

  • PDF

Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합 (Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map)

  • 곽태홍;김용일
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.283-295
    • /
    • 2023
  • 센서 및 위성 기술의 발전에 따라 전세계적으로 다양한 고해상도 다중대역 위성영상이 활용 가능해지고 있다. 다중대역 센서가 가지는 파장에 기인한 고유한 반사, 투과, 산란 특성에 따라 다중대역 위성영상은 지구 관측에 대한 다양한 상호보완적 지표정보를 제공한다. 특히, short-wave infrared (SWIR) 대역은 긴 파장으로 인해 가시광 대역에 비해 Rayleigh 산란에 적게 영향을 받으며, 이로 인해 특정 대기입자를 투과할 수 있다는 특징을 지닌다. 산불, 폭발 등에 의해 발생된 짙은 연기는 가시광 대역의 영상의 가시성을 저하시키고 일부 지역에 대한 지표를 차폐시키는데, SWIR 대역은 이러한 연기에 의해 가려진 지역에 대한 지표정보를 추가로 제공해주기도 한다. 본 연구에서는 이러한 SWIR 대역과 가시광 대역의 영상 정보를 융합하는 다중해상도 변환 기반의 영상 융합 기법을 제안하였다. 제안된 융합 기법의 목적은 상호보완적 관계에 있는 가시광 대역에서의 고해상도 세부적 배경정보와 SWIR 대역에서의 연기 지역에 대한 지표정보를 모두 내포하고 있는 단일 영상을 생성하는 것이다. 이를 위해 본 연구에서는 라플라시안(Laplacian) 피라미드 기반의 다중해상도 변환 기법을 가시광-SWIR 영상 융합에 적용하였다. 다중해상도 변환 기법은 영상 융합에 널리 활용되는 대표적인 영상분해 기반의 방법론으로, 각각의 원 영상을 다양한 스케일로 분해하여 융합하는 기법이다. 또한, 본 연구는 다중해상도 변환 기법에 haze-guided weight map을 융합한 방법론을 제안하였다. Haze-guided weight map은 SWIR 대역이 연기와 같은 특정 대기입자를 투과하여 지표에 대한 정보를 제공해줄 수 있다는 사전지식에 기반하여 제안된 알고리즘으로 다중해상도로 분해된 두 영상을 융합하는 기준이 되는 가중치 지도로써 활용되었다. 제안된 방법론은 가시광 및 SWIR 대역을 포함하고 있는 고해상도 다중대역 위성영상인 Worldview-3 위성영상을 활용하여 검증되었다. 실험 데이터는 주변 산불로 인해 연기가 발생하여 제한된 가시성을 지닌 연기 지역을 포함하고 있으며, 제안된 방법론의 투과 특성을 검증하기 위해 선정되었다. 제안된 기법에 대한 실험결과는 영상 품질 평가 지표를 활용한 정량평가 및 시각평가를 통해 분석되었으며, 결과분석을 통해 연기 지역에 대한 지표정보를 내포하는 SWIR 대역의 밝은 특징값과 가시광 대역 내의 고해상도 정보가 손실없이 최종 융합 영상에 내포됨을 확인할 수 있었다.