• 제목/요약/키워드: Laplace transform order

검색결과 49건 처리시간 0.022초

Note on Stochastic Orders through Length Biased Distributions

  • Choi, Jeen-Kap;Lee, Jin-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.243-250
    • /
    • 1999
  • We consider $Y=X{\lambda}Z,\;{\lambda}>0$, where X and Z are independent random variables, and Y is the length biased distribution or the equilibrium distribution of X. The purpose of this paper is to consider the distribution of X or Y when the distribution of Z is given and the distribution of Z when the distribution of X or Y is given, In particular, we obtain that the necessary and sufficient conditions for X to be $X^{2}({\upsilon})\;is\;Z{\sim}X^{2}(2)\;and\;for\;Z\;to\;be\;X^{2}(1)\;is\;X{\sim}IG({\mu},\;{\mu}^{2}/{\lambda})$, where $IG({\mu},\;{\mu}^{2}/{\lambda})$ is two-parameter inverse Gaussian distribution. Also we show that X is smaller than Y in the reverse Laplace transform ratio order if and only if $X_{e}$ is smaller than $Y_{e}$ in the Laplace transform ratio order. Finally, we can get the results that if X is smaller than Y in the Laplace transform ratio order, then $Y_{L}$ is smaller than $X_{L}$ in the Laplace transform order, and that if X is smaller than Y in the reverse Laplace transform ratio order, then $_{\mu}X_{L}$ is smaller than $_{\nu}Y_{L}$ in the Laplace transform order.

  • PDF

ANALYTICAL SOLUTION OF SINGULAR FOURTH ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS OF VARIABLE COEFFICIENTS BY USING HOMOTOPY PERTURBATION TRANSFORM METHOD

  • Gupta, V.G.;Gupta, Sumit
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.165-177
    • /
    • 2013
  • In this paper, we apply Homotopy perturbation transform method (HPTM) for solving singular fourth order parabolic partial differential equations with variable coefficients. This method is the combination of the Laplace transform method and Homotopy perturbation method. The nonlinear terms can be easily handled by the use of He's polynomials. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as Homotopy perturbation method (HPM), Variational iteration method (VIM) and Adomain Decomposition method (ADM). The proposed scheme finds the solutions without any discretization or restrictive assumptions and avoids the round-off errors. The comparison shows a precise agreement between the results and introduces this method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

THE DOUBLE FUZZY ELZAKI TRANSFORM FOR SOLVING FUZZY PARTIAL DIFFERENTIAL EQUATIONS

  • Kshirsagar, Kishor A.;Nikam, Vasant R.;Gaikwad, Shrikisan B.;Tarate, Shivaji A.
    • 충청수학회지
    • /
    • 제35권2호
    • /
    • pp.177-196
    • /
    • 2022
  • The Elzaki Transform method is fuzzified to fuzzy Elzaki Transform by Rehab Ali Khudair. In this article, we propose a Double fuzzy Elzaki transform (DFET) method to solving fuzzy partial differential equations (FPDEs) and we prove some properties and theorems of DFET, fundamental results of DFET for fuzzy partial derivatives of the nth order, construct the Procedure to find the solution of FPDEs by DFET, provide duality relation of Double Fuzzy Laplace Transform (DFLT) and Double Fuzzy Sumudu Transform(DFST) with proposed Transform. Also we solve the Fuzzy Poisson's equation and fuzzy Telegraph equation to show the DFET method is a powerful mathematical tool for solving FPDEs analytically.

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

유리차수 미분을 이용한 위치제어기 구현 (Position Controller Implementation Using the Fractional Order Derivative)

  • 강정욱;전용호
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.185-190
    • /
    • 2019
  • 본 연구는 유리차수 미분의 수학적인 방법을 시스템의 응답을 제어하는 제어기에 적용하고자 한다. 일반적인 PID제어기의 라플라스 변환은 s의 정수지수를 갖게 된다. 유리차수의 미분은 라플라스 변환에서 s에 대한 유리수 지수를 갖게 된다. 따라서 이를 제어기로 구성하기 위해서는 유리수 지수에 대한 설계가 적절하지 않아 이산시간으로 변환하여 설계하는 방법을 제안한다. 이를 표준 2차 시스템에 적용하여 성능을 살펴보고, 산업현장에서 많이 사용되는 솔레노이드밸브에 적용한다. 외란 상태의 추정이 가능하도록 루엔버거 관측기를 설계하고 관측된 상태에 대하여 유리차수 제어기를 적용하여 균일하며 정밀한 제어성능을 얻을 수 있었다. 정상상태의 위치오차가 0.1 [%]이내이고, 기동시간이 약 0.3 [s]이내의 정밀하며 균일한 위치제어성능 가짐을 확인할 수 있었다.

Fractional order generalized thermoelastic study in orthotropic medium of type GN-III

  • Lata, Parveen;Zakhmi, Himanshi
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.295-305
    • /
    • 2019
  • The present paper is concerned with the investigation of disturbances in orthotropic thermoelastic medium by using fractional order heat conduction equation with three phase lags due to thermomechanical sources. Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in transformed domain and further in physical domain using numerical inversion techniques. The effect of fractional parameter based on its conductivity i.e., ($0<{\alpha}<1$ for weak, ${\alpha}=1$ for normal, $1<{\alpha}{\leq}2$ for strong conductivity) is depicted graphically on various components.

Effect of two-temperature in an orthotropic thermoelastic media with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Composite Materials and Engineering
    • /
    • 제3권3호
    • /
    • pp.241-262
    • /
    • 2021
  • In this article, we studied the effect of two-temperature in a two-dimensional orthotropic thermoelastic media with fractional order heat transfer in generalized thermoelasticity with three-phase-lags due to thermomechanical sources. The boundary of the surface is subjected to linearly distributed and concentrated loads (mechanical and thermal source). The solution of the problem is obtained with the help of Laplace and Fourier transform techniques. The expressions for displacement components, stress components and conductive temperature are derived in transformed domain. Numerical inversion technique is used to obtain the results in physical domain. The effect of two-temperature on all the physical quantities has been depicted with the help graphs. Some special cases are also discussed in the present investigation.

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.