• 제목/요약/키워드: Laplace integral

검색결과 94건 처리시간 0.027초

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

A New Approach for the Derivation of a Discrete Approximation Formula on Uniform Grid for Harmonic Functions

  • Kim, Philsu;Choi, Hyun Jung;Ahn, Soyoung
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.529-548
    • /
    • 2007
  • The purpose of this article is to find a relation between the finite difference method and the boundary element method, and propose a new approach deriving a discrete approximation formula as like that of the finite difference method for harmonic functions. We develop a discrete approximation formula on a uniform grid based on the boundary integral formulations. We consider three different boundary integral formulations and derive one discrete approximation formula on the uniform grid for the harmonic function. We show that the proposed discrete approximation formula has the same computational molecules with that of the finite difference formula for the Laplace operator ${\nabla}^2$.

  • PDF

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin;Ding, Hao-Xuan;Zhang, Yi-Wen
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.225-232
    • /
    • 2022
  • In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

경계요소법에 의한 선형 압밀문제의 해석 (Analysis of Linear Consolidation Problems by the Boundary Element Method)

  • 서일교
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.129-136
    • /
    • 1995
  • 본 연구에서는 Biot의 선형압밀이론에 근거한 2차원 압밀문제의 근사해를 구하기 위한 경계요소법을 제시한다. 먼저 선형 압밀문제의 기초미분방정식의 시간의존성을 제거하기 위하여 시간에 대한 Laplace변환을 적용시키고, 변환공간에서의 미분방정식을 대상으로 정식화를 한다. 변환공간에서의 변위와 간극수압에 대한 경계적분방정식계를 유도하고, 변환공간에서의 연성문제에 대한 기본해를 구체적으로 보인다. 변환공간에서의 해를 실공간의 해로 변환하기 위하여 Hosono의 수직 Laplace역변환법을 적용하였으며, 해석예로서 2차원 반무한 지반의 국소재하에 의한 압밀문제를 해석예로 선택하였고, 암밀해와 비교하여 제안해법의 적용성 및 타당성을 보였다.

  • PDF

수직 단축성을 갖는 반공간 유전체 표면에서 VV, HV, VH 문제의 시간영역 해 (Time-Domain Solutions of the VV, HV, VH Problems at the Surface of a Normally Uniaxial Half-Space Dielectric)

  • 이원석;남상욱
    • 한국전자파학회논문지
    • /
    • 제16권12호
    • /
    • pp.1246-1254
    • /
    • 2005
  • 등방성 상반 매질과 수직 단축성 하반 매질의 경계면에서 $VV{\cdot}HV{\cdot}VH$ 문제에 대해, 임펄스 점전류원에 의해 발생하는 전자장을 이론적으로 고찰한다. 이들 문제에서의 전기장은 Fourier-Laplace 영역의 이상파 성분과만 관련이 있다. 각각의 문제에 대해서 Cagniard-de Hoop 해석법을 응용하여 시간 영역의 전자장 해를 얻는다. VV 문제의 전자장은 적분이 포함되지 않은 명시적인 형태로 구할 수 있다. $HV{\cdot}VH$ 문제의 해에서는 적분을 없앨 수 없지만, 적분해에 내재 된 주요 특이 성분들은 해석적으로 추출된다. 주파수 영역의 계면 원방 전자장은 시간영역의 특이 성분에 의해 결정된다.

熱平衡積分法에 의한 有限 Strip에서의 2次元 過渡熱傳導 問題의 解析 (Analysis of Two-Dimensional Transient Heat Conduction Problems in a Finite Strip by the Heat Balance Integral Method)

  • 서정일;조진호;조종철
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.417-424
    • /
    • 1983
  • This paper presents two methods of obtaining approximate analytic solutions for the temperature distributions and heat flow to two-dimensional transient heat conduction problems in a finite strip with constant thermal properties using the Heat Balance Integral. The methods introduced in this study are as follows; one using the Heat Balance Integral only, and the other successively using the Heat Balance Integral and an exact analytic method. Both methods are applicable to a large number of the two-dimensional unsteady conduction problems in finite regions such as extended surfaces with uniform thickness, but in this paper only solutions for the unsteady problems in a finite strip with boundary condition at the base expressed in terms of step function are provided as an illustration. Results obtained by both methods are compared with those by the exact two-dimensional transient analysis. It is found that both approximate methods generate small time solutions, which can not be obtained easily by any exact analytic method for small values of Fourier numbers. In the case of applying the successive use of the Heat Balance Integral and Laplace transforms, the analysis shows good agreement with the exact solutions for any Fourier number in the range of Biot numbers less than 0.5.

Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments

  • Srivastava, Hari Mohan
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.73-116
    • /
    • 2020
  • The subject of fractional calculus (that is, the calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past over four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of mathematical, physical, engineering and statistical sciences. Various operators of fractional-order derivatives as well as fractional-order integrals do indeed provide several potentially useful tools for solving differential and integral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. The main object of this survey-cum-expository article is to present a brief elementary and introductory overview of the theory of the integral and derivative operators of fractional calculus and their applications especially in developing solutions of certain interesting families of ordinary and partial fractional "differintegral" equations. This general talk will be presented as simply as possible keeping the likelihood of non-specialist audience in mind.

On Certain Integral Transforms Involving Hypergeometric Functions and Struve Function

  • Singhal, Vijay Kumar;Mukherjee, Rohit
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1169-1177
    • /
    • 2016
  • This paper is devoted to the study of Mellin, Laplace, Euler and Whittaker transforms involving Struve function, generalized Wright function and Fox's H-function. The main results are presented in the form of four theorems. On account of the general nature of the functions involved here in, the main results obtained here yield a large number of known and new results in terms of simpler functions as their special cases. For the sake of illustration some corollaries have been recorded here as special cases of our main findings.

Numerical Inversion Technique for the One and Two-Dimensional L2-Transform Using the Fourier Series and Its Application to Fractional Partial Differential Equations

  • Aghili, Arman;Ansari, Alireza
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.383-395
    • /
    • 2012
  • In this paper, we use a computational algorithm for the inversion of the one and two-dimensional $\mathcal{L}_2$-transform based on the Bromwich's integral and the Fourier series. The new inversion formula can evaluate the inverse of the $\mathcal{L}_2$-transform with considerable accuracy over a wide range of values of the independent variable and can be devised for the functions which are not Laplace transformable and have damping motion in small interval near origin.