• Title/Summary/Keyword: Laplace 변환

Search Result 70, Processing Time 0.032 seconds

Analysis of Diffusion Equations by Coupling of Laplace Transform and Finite Element Method (라플라스 변환과 유한요소법의 결합에 의한 확산방정식의 해석)

  • 성병철;이준호;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.161-168
    • /
    • 1998
  • In this paper, a algorithm is proposed, which is applicable to the transient analysis of diffusion equations by combined use of the Laplace transform and the finite element method. The proposed method removes the time terms using the Laplace transform and then solves the associated equation with the finite element method. The solution which is solved at frequency domain is transformed into time domain by use of the Laplace inversion. To verify the proposed algorithm, a heat conduction problem is analysed. And the solution showed a good agreement with analytic solution. Because the time-step method is not needed, the proposed method is very useful in solving various kinds of diffusion equations.

  • PDF

An Application of 2-D BEM with Laplace Transformation to Impact Crack Analysis (균열의 충격해석에 대한 Laplace 변환 2차원 경계요소법의 응용)

  • 조상봉;김태규;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.883-890
    • /
    • 1992
  • Analysis of dynamic or impact problems is very important in engineering fields such as airplanes and automobiles. In the present study, two-dimensional elastodynamic BEM program with Laplace transformation is developed to analyze dynamic or impact problems. Accuracy and efficiency of the BEM program are tested by making the comparision of impact analysis of some models with other's published results. The BEM developed is applied to the impact crack problem and the dynamic stress intensity factors of some impact cracks is obtained by the displacement extrapolation method. It is confirmed to be possible to analyze impact problems accurately with only a little elements in simple models. And also it is found to be careful to use the singular element usually using in static crack problems because that the elastodynamic fundamental solution usually using in static crack problems because that the elastodynamic fundamental solution has more sensitive singularity than the static fundamental solution and to determine the boundary conditions in dynamic problems.

The Solution of Upward Salt Diffusion in Floodeol Soil using Laplace Transformation (침수상태(湛水狀態)에서 토양(土壤) 염분(鹽分) 확산(擴散) 상승(上昇) 해석(解析)에 Laplace변환 이용)

  • Oh, Yong-Taeg;van der Molen, W.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.233-240
    • /
    • 1995
  • Fick's diffusion equation was transformed into algebraic subsidiary equation with its initial and boundary conditions through Laplace transformation, and the subsidiary equation was transformed back on the basis of Burington's table of inverse transformations so that it became the solution of Fick's equation. The initial and boundary condition was for upward diffusion of salts into flooding water of constant depth from uniform polder soil of infinite depth containing constant concentration of salt. The derived solution was tested through comparison for its conformability with other solutions of simpler initial and boundary conditions. The importance of shallow transplanting of rice seedlings and salt removing by growing rice was mentioned on the basis of very slow desalting rate by diffusion calculated from the derived solutions.

  • PDF

Analysis of Linear Consolidation Problems by the Boundary Element Method (경계요소법에 의한 선형 압밀문제의 해석)

  • 서일교
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.129-136
    • /
    • 1995
  • This paper presents a boundary element method for obtaining approximate solutions of 2-dimensional consolidation problems based on the Biot's linear theory. Laplace transform is applied to differential equation system in order to eliminate the time dependency. The boundary integral equations in transformed space are formulated and the fundamental solutions are shown in a closed form. In order to convert the transformed solutions to the ones in real space, the Hosono's numerical Laplace transform inversion method is applied. As a numerical example, a half-space consolidation problem subjected to a strip local load is selected and the applicability of the method is demonstrated through the comparison with the exact solutions.

  • PDF

The impact analysis of interface crack in dissimilar materials using the 2-D laplace transformed BEM (2차원 Laplace 변환 경계요소법에 의한 이종재료 접합면 균열의 충격해석)

  • 김태규;조상봉;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1158-1168
    • /
    • 1994
  • For BEM analyses of the impact problems of dissimilar materials, the connected multi-region method using perfect bonded conditions on the interface boundaries was added to two-dimensional Laplace transformed-domain BEM program for a single region analysis. It was confirmed that the BEM results of impact problems of a single-region and multi-regions for a homogeneous isotropic material are agreed well. The two-dimensional Laplace transformed-domain BEM program combined with connected multi-region method was applied to analyse several impact problems of dissimilar materials. Also the feasibility of BEM impact analyses was investigated for dissimilar materials by the analysis of the BEM results for impact problems of dissimilar materials in terms of physical aspects. As for an application, the two-dimensional Laplace transformed BEM concerning impact problems of cracks at the interface of dissimilar materials and the determinating process of the dynamic stress intensity factors by extrapolation method are presented in this paper.

A new modeling technique for the distributed parameter system - digital modeling approach (연속계의 이산화를 위한 새로운 모델링 기법)

  • 이용관;김인수;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.227-232
    • /
    • 1995
  • This paper presents a digital modeling technique for the distributed parameter system. The basic idea of the proposed technique is to discretize a continuous system with respect to the spatial coordinate using the approximate methods such as bilinear method and backward difference method. The response of the discretized system is analyzed by Laplace transform and Z transform. The computational result of the proposed technique in a torsional shaft is compared with the exact solution and the result of the finite element method.

  • PDF

Evaluation of Ride Comfort in Time Domain by Using z-Transform (z변환을 이용한 시간영역에서의 승차감 평가)

  • Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Sang-Soo;Kim, Ki-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.495-500
    • /
    • 2011
  • In evaluating the ride comfort of railway vehicles, relationship between passenger's feeling and vibration characteristics is very important because human feeling is dependent on frequency spectrum of vibration. Therefore, the weighing curves in frequency domain are used to evaluate the ride comfort of railway vehicles. These curves have been defined in the Laplace transfer functions. It is necessary to convert the Laplace weighing function to the z weighing function in order to obtain the rms value in the time domain. In the present paper, we have applied Tustin's approximation to transform the Laplace weighing function to the z weighing and validated this method by reviewing the various cases.

An Alternative One-Step Computation Approach for Computing Thermal Stress of Asphalt Mixture: the Laplace Transformation (새로운 아스팔트 혼합물의 저온응력 계산 기법에 대한 고찰: 라플라스 변환)

  • Moon, Ki Hoon;Kwon, Oh Sun;Cho, Mun Jin;Cannone, Falchetto Augusto
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.219-225
    • /
    • 2019
  • Computing low temperature performance of asphalt mixture is one of the important tasks especially for cold regions. It is well known that experimental creep testing work is needed for computation of thermal stress and critical cracking temperature of given asphalt mixture. Thermal stress is conventionally computed through two steps of computation. First, the relaxation modulus is generated thorough the inter-conversion of the experimental creep stiffness data through the application of Hopkins and Hamming's algorithm. Secondly, thermal stress is numerically estimated solving the convolution integral. In this paper, one-step thermal stress computation methodology based on the Laplace transformation is introduced. After the extensive experimental works and comparisons of two different computation approaches, it is found that Laplace transformation application provides reliable computation results compared to the conventional approach: using two step computation with Hopkins and Hamming's algorithm.

Study on the Dynamic Analysis of the Continuous System by Digital Modeling (이산화 기법에 의한 연속계의 동적 응답해석에 관한 연구)

  • 이용관;김인수;홍성욱;췌처린
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.135-142
    • /
    • 1997
  • This paper presents a digital modeling technique of the distributed system. The basic idea of the proposed technique is to discretize a continuous system with respect to the spatial coordinates using bilinear method. The response of the discretized system is analyzed by Laplace transform and z-transform. The computational results in torsional shaft and Timoshenko beam using the proposed technique are compared with the exact solutions and the results of finite element method.

  • PDF

Steady-State Analysis of Single Phase LSPM Motor using the Laplace's Transform (Laplace 변환을 이용한 단상 LSPM전동기의 정상상태 기동특성 해석)

  • Choi, Myoung-Hyun;Kim, Byung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.820-821
    • /
    • 2011
  • 본 논문은 단상 line-start permanent- magnet (LSPM) 전동기가 가지는 비동기 운전영역에서 나타나는 다양한 토크성분을 해석적 방법으로 분석한다. 비 동기속도에서의 정상상태 전류를 DQ 등가회로를 이용하여 유도하였으며, 이를 이용하여 유도전류와 제동전류의 주파수를 확인하였다. 마지막으로 시간차분 해석을 이용하여 비동기 운전영역의 특정 속도에 대한 토크와 전류를 분석하였으며, 주파수 변환을 이용하여 각 전류의 주파수 성분을 확인하였다.

  • PDF