• Title/Summary/Keyword: Lap-splice

Search Result 163, Processing Time 0.028 seconds

Pseudo-Dynamic Test for Seismic Performance Evaluation of RC Bridge Piers (실물 철근콘크리트 교각의 유사동적 실험에 의한 내진성능 평가)

  • 박창규;박진영;정영수;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.250-257
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach Pseudo dynamic tests of six full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, five test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Experimental study on the behavior of reinforced concrete beam boosted by a post-tensioned concrete layer

  • Mirzaee, Alireza;Torabi, Ashkan;Totonchi, Arash
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.549-557
    • /
    • 2021
  • Nowadays, strengthening of buildings is an inclusive and effective field in civil engineering that is not only applicable to the buildings but also it can be developed for the bridges. Rehabilitation and strengthening of structures are highly recommended for the existing structures due to the alter in codes and provisions as well as buildings' use change. Extensive surveys have been conducted in this field in the world that propose wide variety of methods for strengthening of structures. In recent years, more specific researches have been carried out that present novel materials for rehabilitation beside proposing methods and performing techniques. In the current study, a novel technique for developing the bending capacity of reinforced concrete beams to enhance their performance as well as rehabilitating and reforming the performance of reinforced concrete beams with nonstandard lap splices, has been proposed. In this method, a post-tensioned concrete layer is added to the side face of the concrete beams built in 1:1 scale. Results reveals that addition of the post-tensioned layer enhances the beams' performance and covers their weaknesses. In this method, 18 reinforced concrete beams were prepared for the bending test which were subjected to the four-point pushover test after they were reinforced. The testing process ended when the samples reached complete failure status. Results show that the performance and flexural capacity of reinforced beams without lap splice is improved 22.7% compared to the samples without the post-tensioned layer, while it is enhanced up to at least 80% compared to the reinforced beams with nonstandard lap splice. Furthermore, the location of plastic hinges formation was transformed from the beam's mid-span to the 1/3 of span's end and the beam's cracking pattern was significantly improved.

Behavior of tension lap spliced sustainable concrete flexural members

  • Al-Azzawi, Adel A.;Daud, Raid A.;Daud, Sultan A.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.83-92
    • /
    • 2020
  • The use of spliced reinforcing bars in sustainable concrete members to manage inadequate bars length is a common practical issue which is may be due to some limitations. The lap splicing means two bars overlapped in parallel with specified length called the splice length in order to provide the required bond between the two bars. The bond between sustainable concrete and spliced steel bars is another important issue. The normal strength sustainable concrete specimens of sizes 1700×150×150 mm with tension reinforcement lap spliced were selected according to testing device length limitations. These members were designed to fail in flexure in order to investigate the lap spliced tension bars effect. The selected lap spliced tension bars were of 10 mm size with smooth and deformed surfaces in order to investigate the surface nature accompanied with the splice nature. The sustainable concrete mechanical properties and mix workability were also studied. This study reveals that the effect of number of spliced bars on the response of beams reinforced with smooth bars is found to be more obvious than deformed one. Finite element modeling in three dimensions was carried out for the tested beams using ABAQUS software. A parametric study is carried out using finite elements on considering the following parameters, concrete compressive strength, load type and opening in cross section (hollow section) for weight reduction purposes.The laboratory and numerical results show good agreements in terms of ultimate load and deflection with an average difference of 10% and 15% in ultimate load and deflection respectively.

Fabrication of 6 double pancakes Bi-2223 HTS magnet (6 더블팬케이크 Bi-2223 고온초전도 마그네트 제작)

  • Ha, Hong-Soo;Jang, Hyun-Man;Lee, Nam-Jin;Oh, Sang-Soo;Ha, Dong-Woo;Ryu, Kang-Sik;Lee, Hai-Gun;Lee, Jun-Suck
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.373-377
    • /
    • 1999
  • HTS magnet operated at 20${\sim}$40 K was fabricated using three pieces of 100 m Bi-2223 high temperature superconductors fabricated by powder-in-tube process. It was composed of 6 double pancakes with 75 ID. and 113 OD. connected by lab splice. Coil I$_c$ of each DP.(double pancake) obtained for a 140 turn, fabricated using react and wind procedure was 6${\sim}$8 A at 77 K, self field. The maximum field was measured 0.06 T at lop = 5 A, 77 K. The joint resistance due to lap splice of HTS tapes affect badly to operate HTS magnet with persistent current mode, total effective magnet resistance included lap splice was 55 ${\mu}$ ${\omega}$ at 77 K.

  • PDF

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

Study of Development on Mechanical Connection of Reinforcing Bars (With Study of Tensile Force) (철근 커플러 개발에 관한 연구 (인장력 시험을 중심으로))

  • 최희복;김광희;강경인
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.37-41
    • /
    • 2002
  • Lap splice is used in building construction up to recently. As buildings become higher and larger, the use of high tensile bar is increasing due to increasing in the use of high compression concrete. However the using of high tensile bar in lap splice causes eccentricity and difficulty in placing of concrete inside the form, therefore not allowing enough intervening material. Various mechanical connection are being developed but the coupler of today needs either a secondary intervening material or secondary processing that consumes much time. Therefore a coupler, needing neither a secondary intervening material nor secondary processing, was made in this study which lead to following results. (1) Breaking occurred in all experimented rebar. (2) Acquirement of tension exceeding the standard requirement. (3) Acquirement of elongation percentage within the standard requirement.

  • PDF

Etructural Performance Evaluation of Columns in a Reinforced Concrete Ordinary Moment Frame Building (철근콘크리트 보통모멘트조건물의 기두에 대한 구조성능 평가)

  • 배성진;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.440-445
    • /
    • 2000
  • The purpose of this study is to investigate the structural performance of columns in an Reinforced Concrete Ordinary Moment Frame building. For this purpose, a 3-story building was designed according to the Korea seismic design provisons and ACI 318-99, and the columns of in the first story were constructed. The columns were classified into interior and columns. For each interior and exterior columns, upper and lower parts ate modeled by the 2/3 scale experimental specimens. The specimens for lower part columns have lap splice. The interior columns were tested under the constant axial force, while the exterior columns were tested under the fluctuating axial force. Based on the results of the experiments, the effects of the lap splice and axial force on the column performance are evaluated.

  • PDF

Experimental Research on Development and Splices Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 정착 및 겹침이음길이에 관한 실험적 연구)

  • 이기열;김우;정기오
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.865-871
    • /
    • 2003
  • This paper presents the test results of 24 beam-end specimens to investigate the effect of concrete strength and cover thickness on the development resistance capacity in tensile lap splice length regions. The results showed that as higher strength concrete was employed, nor only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of ($\sqrt{f_{ck}}$) but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.

  • PDF

Rigid-Body-Spring Networks를이용한 철근콘크리트의 Lap Splice 설계 모델 시뮬레이션

  • Yun, Seung-Hyeon;Park, Ji-Un
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.180-186
    • /
    • 2017
  • 거의 모든 철근콘크리트 구조물의 보강 강재는 분할된 두개 이상의 철근으로 제작되며, 이러한 철근의 분할 부위를 평행한 두개의 철근으로 겹쳐 설치하는 것을 겹이음(Lap splice)이라고 부른다. 일반적으로 겹이음 설계는 무리없이 설계 강도를 만족시킬 뿐만 아니라 충분히 긴 수명을 가진다. 그러나 550MPa 이상의 항복 강도를 갖는 철근이나 인장 부재의 설계, 초고성능 섬유보강 콘크리트의 보강재 설계와 같은 경우, 현행 철근 겹이음 설계만으로는 그 한계가 발생한다. 따라서 현 겹이음 설계는 관련 기준의 추가와 구조적인 측면에서의 개선이 필요할 것으로 보여지며, 이를 위해 적절한 실험과 데이터 분석, 그리고 컴퓨터를 이용한 새로운 설계 모델의 개발 등의 과정이 필요할 것으로 여겨진다. 본 연구는 균질하지 않은 물성의 파괴를 다루는 RBSN(Rigid-Body-Spring Networks)을 통한 컴퓨터 시뮬레이션으로 더 효과적이고 정확한 겹이음 설계가 가능할 것으로 판단하고, 실제 모델링으로 그 가능성을 검증하였다.

  • PDF

An Experimental Study on Effects Transverse Reinforcement in Lap-Spliced Tension Reinforcing Bars (인장철근의 겹침이음에서 횡보강근의 효과에 관한 실험적 연구)

  • 이호준;최선아;연규원;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.879-884
    • /
    • 2000
  • In this study, an experimental work is conducted to evaluate the bond performance between reinforcing bars and surrounding concrete in a lapped splice. The major variable of this test is a transverse reinforcement in lap-spliced tension reinforcing bars. The test results indicate that the bond strength per unit splice length increases with an increase in the transverse reinforcement factor $K_{\alpha}$. The specimens taken less than (c+$K_{tr}$)/$d_b$=3.0 tend to be very brittle at failure. But the specimens taken longer than (c+$K_{tr}$)/$d_b$=3.0 tend to be somewhat ductile at failure.