• 제목/요약/키워드: Language Learning

Search Result 2,254, Processing Time 0.026 seconds

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

The Impact of Edu-Tech and Tangible and Intangible Services of Private Institutes on parents' Intention for Re-Enrollment: The Moderating Effect of Rapport-Building Behavior (학원의 에듀테크특성과 유·무형적서비스가 학부모의 재수강의도에 미치는 영향: 라포형성행동의 조절효과)

  • Jeon, Ji-Yeon;Ha, Tae-Kwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.4
    • /
    • pp.127-139
    • /
    • 2024
  • This study investigates the impact of edutech characteristics and both tangible and intangible educational services on the intention to re-enroll, which is directly related to the management performance of private institutes. The study aims to propose strategies to improve re-enrollment intentions and management performance based on the findings. Private education has grown continuously, complementing the limitations of public education and increasing parental dependence. This study tested the hypothesis that edutech characteristics, intangible services, and tangible services, increasingly utilized with the development of information and communication technology, would influence re-enrollment intentions. It also examined whether rapport-building behavior with parents would have a moderating effect on this relationship. The hypothesis testing results showed that among the edutech characteristics, content, intangible services such as reliability and empathy, and tangible services such as tangibility and payment accessibility positively impacted re-enrollment intentions. The hypothesis that rapport-building behavior would moderate the relationship between educational services and re-enrollment intentions was supported for empathy in intangible services and tangibility in tangible services. Based on these findings, the study proposed three strategies to improve management performance of private institutes. First, in terms of improving and managing edutech characteristics, it suggested introducing and updating edutech content and ensuring operational stability. Second, for improving and managing intangible services, it recommended managing instructor recruitment and training to enhance quality and competence, maintaining professionalism through continuous education by credible institutions, and providing level-based education for students based on the qualitative improvement of educational programs. Third, to improve and manage tangible services, it suggested setting appropriate tuition fees, offering various payment methods (online, mobile, card, bank transfer) unrestricted by time and place, and equipping interiors and facilities that enable focused learning. Additionally, considering the moderating effect of rapport-building behavior, it emphasized that improvements and management requiring costs are necessary, but making parents feel a high level of tangibility through rapport-building is also important. Furthermore, given the increasing importance of edutech based on information and communication technology, the study highlighted the need for various support measures such as government technological support and venture certification system support for institutes with an entrepreneurial spirit aiming to introduce innovative technologies such as AI technology based on large language models and AR/VR-applied metaverse environments. This study is expected to help improve the management performance of private institutes by specifically suggesting items and methods for improvement and management in the educational field.

  • PDF

Construction of Event Networks from Large News Data Using Text Mining Techniques (텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축)

  • Lee, Minchul;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.183-203
    • /
    • 2018
  • News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.

CLINICAL STUDY OF THE ABUSE IN PSYCHIATRICALLY HOSPITALIZED CHILDREN AND ADOLESCENTS (소아청소년 정신과병동 입원아동의 학대에 대한 임상 연구)

  • Lee, Soo-Kyung;Hong, Kang-E
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 1999
  • This study was performed by the children and adolescents who were abused or neglected physically, emotionally that were selected in child & adolescents psychiatric ward. We investigated the number of these case in admitted children & adolescents, and also observed characteristics of symptoms, developmental history, characteristics of abuse style, characteristics of abusers, family dynamics and psychopathology. We hypothesized that all kinds of abuse will influnced to emotional, behavioral problems, developmental courses on victims, interactive effects on family dynamics and psychopathology. That subjects were 22 persons of victims who be determined by clinical observation and clinical note. The results of the study were as follows:1) Demographic characteristics of victims:ratio of sex was 1:6.3(male:female), mean age was $11.1{\pm}2.5$. According to birth order, lst was 12(54.5%), 2nd was 5(23%), 3rd was 2(9%) and only child was 3(13.5%). 2) Characteristics of family:According to socioeconomic status, middle to high class was 3(13.5%), middle one was 9(41.% ), middle to low one was 9(41%), low one was 1(0.5%). according to number of family, under the 3 person was 3(13.5%), 4-5 was 17(77.5%), 6-7 was 2(9%). according to marital status of parents, divorce or seperation were 5(23%), remarriage 2(9%), severe marital discord was 19(86.5%). In father, antisocial behavior was 7(32%), alcohol dependence was 10(45.5%). In mother, alcohol abuse was 5(23%), depression was 17(77.3%), history of psychiatric management was 6(27%). 3) Characteristics of abuse:Physical abuse was 18(81.8%), physical and emotional abuse and neglect were 4(18.2%). according to onset of abuse, before 3 years was 15(54.5%), 3-6 years was 5(27.5%), schooler was 1(15%). Only father offender was 2(19%), only mother offender was 8(35.4%), both offender was 8(35.4%), accompaning with spouse abuse was 7(27%), and accompaning with other sibling abuse was 4(18.2%). 4) General characteristics and developmental history of victims:Unwanted baby was 12(54.5%), developmental delay before abuse was9(41%), comorbid developmental disorder was 15(68%). there were 6(27.5%) who didn‘t show definite sign of developmental delay before abuse. 5) Main diagnosis and comorbid diagnosis:According to main diagnosis, conduct disorder 6(27.3%), borderline child 5(23%), depression4(18%), attention deficit hyperactivity disorder(ADHD) 4(18%), pervasive developmental disorder not otherwise specified 2(9%), selective mutism 1(5%). According to comorbid diagnosis, ADHD, borderline intelligence, mental retardation, learning disorder, developmental language disorder, oppositional defiant disorder, chronic tic disorder, functional enuresis and encoporesis, anxiety disorder, dissociative disorder, personality disorder due to medical condition. 5) Course of treatment:A mean duration of admission was $2.4{\pm}1.5$ months. 11(15%) showed improvement of symtoms, however 11(50%) was not changed of symtoms.

  • PDF