• Title/Summary/Keyword: Langmuir-Hinshelwood mechanism

Search Result 10, Processing Time 0.025 seconds

Kinetic and Effectiveness Factor for Methanol Steam Reforming over CuO-ZnO-Al2O3 Catalysts (CuO-ZnO-Al2O3 촉매에서의 메탄올 수증기 개질반응에 대한 반응속도와 유효성인자)

  • Lim, Mee-Sook;Suh, Soong-Hyuck
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.214-223
    • /
    • 2002
  • Kinetic and effectiveness factors for methanol steam reforming using commercial copper-containing catalysts in a plug flow reactor were investigated over the temperature ranges of $180-250^{\circ}C$ at atmospheric pressure. The selectivity of $CO_2$/$H_2$ was almost 100%, and CO products were not observed under reaction conditions employed in this work. It was indicated that $CO_2$ was directly produced and CO was formed via the reverse water gas shift reaction after methanol steam reforming. The intrinsic kinetics for such reactions were well described by the Langmuir-Hinshelwood model based on the dual-site mechanism. The six parameters in this model, including the activation energy of 103kJ/mol, were estimated from diffusion-free data. The significant effect of internal diffusion was observed for temperature higher than $230^{\circ}C$ or particle sizes larger than 0.36mm. In the diflusion-limited case, this model combined with internal effectiveness factors was also found to be good agreement with experimental data.

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Kinetic Analysis of Oxidative Coupling of Methane over Na+/MgO Catalyst (Na+/MgO 촉매상에서 메탄의 Oxidative Coupling 반응의 속도론적 해석)

  • Seo, Ho-Joon;Sunwoo, Chang-Shin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-587
    • /
    • 1994
  • The oxidative coupling of methane was studied kinetically using $Na^+(50wt%)/MgO$ catalyst at 710, 730, 750, 770 and $790^{\circ}C$ in a fixed bed flow reactor at the atmospheric pressure under differential conversion conditions. Through curve fitting, it was found that the Langmuir-Hinshelwood type mechanism was fitted to this reaction rather than Rideal-Redox type or Eley-Rideal type mechanism. Therefore, it was proposed that the $O_2{^-}$ or $O_2{^{2-}}$ species on the surface was related to the production of $CH_3{\cdot}$. The estimated activation energy of $CH_3{\cdot}$ production was about 39.3kcal/mol. Moreover, as the result of curve fitting, the stoichiometric coefficient of $O_2$ for the production of $CH_3{\cdot}$ to produce $CO_x$was approximately 1.5. Accordingly, it could be concluded that the $CH_3O_2{\cdot}*$ was prouduced through the partial oxidation of $CH_3{\cdot}$ with the surface oxygen.

  • PDF

Study of reaction mechanism in pre-reforming for MCFC (MCFC의 예비 개질 반응 메커니즘 연구)

  • Lee, Woo-Hyung;Park, Yong-Ki
    • Industry Promotion Research
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, the reaction mechanism of ethane and the reaction rate equation suitable for hydrocarbon reforming were studied. Through the reaction mechanism analysis, it was confirmed that three reactions (CO2 + H2, C2H6 + H2, C2H6 + H2O) proceed during the reforming reaction of ethane, each reaction rate (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) was determined. It was confirmed that the C2H6 + H2O reaction was a rate determining step (RDS). And the reaction equation of this reaction can be expressed as r = kS * (KAKBPC2H6PH2O) / (1 + KAPC2H6 + KBPH2O) (KA = 2.052, KB = 6.384, $kS=0.189{\times}10-2$) through the Langmuir-Hinshelwood model. The obtained equation was compared with the derived power rate law without regard to the reaction mechanism and the power rate law was relatively similar fitting in the narrow concentration change region (about 2.5-4% of ethane, about 60-75% of water) It was confirmed that the LH model reaction equation based on the reaction mechanism shows a similar value to the experimental value in the wide concentration change region.

Synthesis of ETBE as an Octane Enhancer for Gasoline over Macroreticular Robin Catalysts (그물구조 수지 촉매상에서 가솔린 옥탄가 향상제인 ETBE 합성)

  • Park, Jin-Hwa;Lee, Jin-Hyung;Kim, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.825-835
    • /
    • 1994
  • Synthesis of ETBE as an octane number enhancer from ethanol and isobutene in a flow reactor under atmospheric pressure was studied. Amberlyst-15 and Amberlyst XN-1010 were used as catalysts within the temperature range of $70-140^{\circ}C$. The activity of Amberlyst 15 was higher than that of Amberlyst XN-1010. The reaction rate data obtained under differential reactor condition were tested by a linear regression method to determine the reaction mechanism and kinetic parameters. The ETBE synthesis reaction seems to be proceeded via the LHHW(Langmuir-Hinshelwood-Hougen-Watson) machanism. The activation energy of the surface reaction was estimated by the reaction rate constants as well as the adsorption equilibrium constants. Apparent activation energies are 18.64 and 24.19kcal/mol for Amberlyst-15 and Amberlyst XN-1010, respectively.

  • PDF

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

Experimental and Numerical Analysis of A Novel Ceria Based Abrasive Slurry for Interlayer Dielectric Chemical Mechanical Planarization

  • Zhuanga, Yun;Borucki, Leonard;Philipossian, Ara;Dien, Eric;Ennahali, Mohamed;Michel, George;Laborie, Bernard;Zhuang, Yun;Keswani, Manish;Rosales-Yeomans, Daniel;Lee, Hyo-Sang;Philipossian, Ara
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.53-57
    • /
    • 2007
  • In this study, a novel slurry containing ceria as the abrasive particles was analyzed in terms of its frictional, thermal and kinetic attributes for interlayer dielectric (ILD) CMP application. The novel slurry was used to polish 200-mm blanket ILD wafers on an $IC1000_{TM}$ K-groove pad with in-situ conditioning. Polishing pressures ranged from 1 to 5 PSI and the sliding velocity ranged from 0.5 to 1.5 m/s. Shear force and pad temperature were measured in real time during the polishing process. The frictional analysis indicated that boundary lubrication was the dominant tribological mechanism. The measured average pad leading edge temperature increased from 26.4 to $38.4\;^{\circ}C$ with the increase in polishing power. The ILD removal rate also increased with the polishing power, ranging from 400 to 4000 A/min. The ILD removal rate deviated from Prestonian behavior at the highest $p{\times}V$ polishing condition and exhibited a strong correlation with the measured average pad leading edge temperature. A modified two-step Langmuir-Hinshelwood kinetic model was used to simulate the ILD removal rate. In this model, transient flash heating temperature is assumed to dominate the chemical reaction temperature. The model successfully captured the variable removal rate behavior at the highest $p{\times}V$ polishing condition and indicates that the polishing process was mechanical limited in the low $p{\times}V$ polishing region and became chemically and mechanically balanced with increasing polishing power.

Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst (니켈기반 촉매를 사용한 메탄가스-수증기 개질반응의 모사)

  • Lee, HongJin;Kim, Woohyun;Lee, Kyubock;Yoon, Wang Lai
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.914-920
    • /
    • 2018
  • The intrinsic kinetic parameters of steam-methane reforming reactions over commercial nickel-based catalyst were determined. The reaction rate equations were derived from the reaction mechanism-based Langmuir-Hinshelwood chemisorption theory. As the experimental variables for the kinetic study, the reaction temperature ranged from 630 to $750^{\circ}C$ and the steam-to-carbon ratio also varied from 2.7 to 3.5. Based on the experimental data, the efficient optimization algorithm was used to determine the intrinsic kinetic parameters due to the high-dimensional objective function. It is confirmed that the parameter estimation results showed good agreement with the experimental values. Thus, this proposed mathematical reaction model can be used as the basic information to design a catalytic reactor and to optimize operating conditions.

Kinetics and Mechanism of the Selective Oxidation of Ethylene for Ethylene Oxide over Monolithic Silver Catalyst (모놀리스형 은촉매상에서 에틸렌선택산화반응의 속도론적 고찰)

  • Park, Rho-Bum;Kim, Sang-Chai;Sunwoo, Chang-Sin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.165-174
    • /
    • 1991
  • The kinetics and the mechanism for the selective oxidation of ethylene on the supported monolithic silver catalyst were experimentally investigated in a fixed bed tubular reactor. The formation rates of ethylene oxide and carbon dioxide were measured at the atmospheric pressure with various combinations of partial pressures of ethylene and oxygen at temperature range of $225-300^{\circ}C$, conversion with 1.2-7.5 %, and then the mechanism of the selective oxidation of ethylene was verified. Their formation rates fitted with the Langmuir-Hinshelwood mechnism. The ethylene oxide and carbon dioxide are produced by reation of adsorbed ethylene with monoatomic oxygen adsorbed on the active sites of Ag-surface, and their formation rate equation are expressed as : $R_{EO}={\frac{k_1K_0{^{1/2}}K_EK_SP_{02}{^{3/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^2(1+{\sqrt{K_SP_{02}})^2}}$ $R_C={\frac{k_2K_0{^3}K_EK_S{^{7/2}}P_{02}{^{13/2}}P_E}{(1+{\sqrt{K_0P_{02}}}+K_EP_E+K_PP_P)^7(1+{\sqrt{K_SP_{02}})^7}}$ The activation energies of ethylene oxide and dioxide and carbon dioxide formations can be estimated to be 12.25 and 17.85 Kcal/mol, respectively.

  • PDF

Modeling and Performance Analysis of SCR $DeNO_X$ Catalyst for Reducing $NO_X$ Emissions in Diesel Engine (디젤엔진의 $NO_X$ 저감을 위한 SCR $DeNO_X$ 촉매의 모델링 및 성능해석)

  • Kim, Young-Deuk;Kim, Woo-Seung;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.137-145
    • /
    • 2009
  • The steady-state kinetics of the selective catalytic reduction (SCR) of $NO_X$ with $NH_3$ has been investigated over a commercial ${V_2}{O_5}/TiO_2$ catalyst. In order to account for the influence of transport effects the kinetics are coupled with a fully transient two-phase 1D+1D monolith channel model. The Langmuir-Hinshelwood (L-H) mechanism is adopted to describe the steady-state kinetic behavior of the ${V_2}{O_5}/TiO_2$ catalyst. The reaction rate expressions are based on previously reported papers and are modified to fit the experimental data. The steady-state chemical reaction scheme used in the present mathematical model has been validated extensively with experimental data of selective $NO_X$ reduction efficiency for a wide range of inlet conditions such as space velocity, oxygen concentrations, water concentration, and $NO_2/NO$ ratio. The parametric investigations are performed to examine how the $NH_3$ slip from a SCR $DeNO_X$ catalyst and the conversion of $NO_X$ are affected by the reaction temperature, $NH_3/NO_X$ feed ratio, and space velocity for feed gas compositions with $NO_2/NO_X$ ratios of 0 and 0.5.