Fig. 1. Experimental apparatus for catalytic activity tests.
Fig. 2. The effects of temperature (630~750℃) and S/C ratio (2.7- 3.5) on methane conversion (XCH4) & CO2 selectivity (SCO2).
Fig. 3. Comparison of mole fraction between the experimental data and the predicted values (a) S/C 3.5 (b) S/C 3.0 (c) S/C 2.7 and (d) parity chart.
Table 1. Reaction mechanism in SMR
Table 2. Equilibrium constants of reactions I, II and III
Table 3. Boundary conditions of the intrinsic kinetic parameters
Table 4. Catalyst characteristic
Table 5. Experiment condition set
Table 6. Comparison of kinetic parameters between this work and other researches
References
- https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement.
- Numaguchi, T. and Kikuchi K., "Intrinsic Kinetics and Design Simulation in a Complex Reaction Network; Steam-Methane Reforming," Chem. Eng. Sci., 43(8), 2295-2301(1988). https://doi.org/10.1016/0009-2509(88)87118-5
- Kim, D. H. and Lee, T. J., "Kinetics of Methane Steam Reforming," Korean Chem. Eng. Res., 29(4), 396-406(1991).
- Sauk, J. K., Shul, Y. G., Jung, D. H., Kim, C. H., Shin, D. R. and Yang, J. C., "Effect of Crossover on the Performance of Direct Methanol Fuel Cell(DMFC)," Korean Chem. Eng. Res, 37(1), 21-26(1999).
- Yoon, W. L., Park, J. W., Rhee, Y. W., Han, M. W., Jeong, J. H., Park, J. S., Jung, H., Lee, H. T. and Kim, C. S., "Operating Characteristics of Integrated NG Reformer System for 5 kW Class PEM Fuel Cell," Korean Chem. Eng. Res., 41(3), 389-396(2003).
- Rostrup-Nielsen, T., "Manufacture of Hydrogen," Catal. Today, 106(1-4), 293-296(2005). https://doi.org/10.1016/j.cattod.2005.07.149
- Hoang, D. L., Chan S. H. and Ding, O. L., "Kinetic and Modelling Study of Methane Steam Reforming Over Sulfide Nickel Catalyst on a Gamma Alumina Support," Chem. Eng. Sci., 112(1-3), 1-11(2005). https://doi.org/10.1016/j.cej.2005.06.004
- Barelli, L., Bidini, G., Gallorini, F. and Servili, S., "Hydrogen Production Through Sorption-Enhanced Steam Methane Reforming and Membrane Technology: A Review," Energy, 33(4), 554-570(2008). https://doi.org/10.1016/j.energy.2007.10.018
-
Oliveira, E. L. G., Grande, C. A. and Rodrigues, A. E., "Steam Methane Reforming in a
$Ni/Al_2O_3$ Catalyst: Kinetics and Diffusional Limitations in Extrudates," Can. J. Chem. Eng., 87(6), 945-956(2009). https://doi.org/10.1002/cjce.20223 - Oliveira, E. L. G., Grande, C. A. and Rodrigues, A. E., "Methane Steam Reforming in Large Pore Catalyst," Chem. Eng. Sci., 65(5), 1539-1550(2010). https://doi.org/10.1016/j.ces.2009.10.018
- Avraam, D. G., Halkides, T. I., Liguras, D. K., Bereketidou, O. A. and Goula, M. A., "An Experimental and Theoretical Approach for the Biogas Steam Reforming Reaction," Int. J. Hydrog. Energy, 35(18), 9818-9827(2010). https://doi.org/10.1016/j.ijhydene.2010.05.106
- Park, J. E., Park, J. H., Yim, S. D., Kim, C. S. and Park, E. D., "A Comparative Study of Commercial Catalysts for Methanol Steam Reforming," Korean Chem. Eng. Res., 49(1), 21-27(2011). https://doi.org/10.9713/kcer.2011.49.1.021
- Maier, L., Schadel, B., Delgado H. K., Tischer, S. and Deutschmann, O., "Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism", Top. Catal., 54(13-15), 845-858(2011). https://doi.org/10.1007/s11244-011-9702-1
- Baek, S. M., Kang, J. H., Lee, K. J. and Nam, J. H., "A Numerical Study of the Effectiveness Factors of Nickel Catalyst Pellets Used in Steam Methane Reforming for Residential Fuel Cell Applications," Int. J. Hydrog. Energy, 39(17), 9180-9192(2014). https://doi.org/10.1016/j.ijhydene.2014.04.067
-
Won, J. M., Park, G. W., Lee, J. W. and Hong S. C., "Study on Effects of
$Ni/Al_2O_3$ Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions," Korean Chem. Res., 54(4), 560-567(2016). https://doi.org/10.9713/kcer.2016.54.4.560 -
Abbas, S. Z., Dupont, V. and Mahmud, T., "Kinetics Study and Modelling of Steam Methane Reforming Process over a
$NiO/Al_2O_3$ Catalyst in an Adiabatic Packed Bed Reactor", Int. J. Hydrog. Energy, 42(5), 2889-2903(2017). https://doi.org/10.1016/j.ijhydene.2016.11.093 - Akers, W. W. and Camp, D. P., "Kinetics of the Methane-Steam Reaction," AIChE J., 1(4), 471-475(1955). https://doi.org/10.1002/aic.690010415
- Ross, J. R. H. and Steel, M. C. F., "Mechanism of the Steam Reforming of Methane over a Coprecipitated Nickel-Alumina Catalyst," J. Chem. Soc. Faraday Trans. 1, 69, 10-21(1973).
- Rostrup-Nielsen, J. R., "Activity of Nickel Catalysts for Steam Reforming of Hydrocarbons," J. Catal., 31(2), 173-199(1973). https://doi.org/10.1016/0021-9517(73)90326-6
- Quach, T. Q. P. and Rouleau, D., "Kinetics of Methane-Steam Reaction Over Nickel Cataylst in a Continuous Stirred Tank Reactor," J. Appl. Chem. Biotechnol., 25(6), 445-459(1975). https://doi.org/10.1002/jctb.5020250607
- Munster, P. and Grabke, H. J., "Kinetics of the Steam Reforming of Methane with Iron, Nickel, and Iron-Nickel Alloys as Catalysts," J. Catal., 72(2), 279-287(1981). https://doi.org/10.1016/0021-9517(81)90010-5
- De Deken, J. C., Devos, E. F. and Froment, G. F., "Steam Reforming of Natural gas: Intrinsic Kinetics, Diffusional Influences, and Reactor Design, " Chem. Reaction Eng. Boston., 196(16), 181-197 (1982).
- Xu, J. and Froment, G. F., "Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics," AIChE J, 35(1), 88-96(1989). https://doi.org/10.1002/aic.690350109
- Ko, K. D., Lee, J. K., Park, D. K. and Shin S. H., "Kinetics of Steam Reforming Over a Ni/Alumina Catalyst," Korean Chem. Res., 12(4), 478-480(1995). https://doi.org/10.1007/BF02705814
-
Hou, K. and Hughes, R., "The Kinetics of Methane Steam Reforming Over a
$Ni/{\alpha}-Al_2O$ Catalyst," Chem. Eng. J., 82(1-3), 311-328 (2001). https://doi.org/10.1016/S1385-8947(00)00367-3 - Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. and Filippis, P. D., "Kinetic of Methane Steam Reforming reaction Over nickel- and Rhodium-Based Catalysts," Appl. Catal. A-Gen., 387(1-2), 147-154(2010). https://doi.org/10.1016/j.apcata.2010.08.017
- Jakobsen, J. H., Jakobsen, M., Chorkendorff, I. and Sehested, J., "Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst," Catal. Lett., 140(3-4), 90-97(2010). https://doi.org/10.1007/s10562-010-0436-7
- Pantoleontos, G., Kikkinides, E. S. and Georgiadis, M. C., "A Heterogeneous Dynamic Model for the Simulation and Optimization of the Steam Methane Reforming Reactor," Int. J. Hydrog. energy, 37(21), 16346-16358(2012). https://doi.org/10.1016/j.ijhydene.2012.02.125
- Elnashaie, S. S. E. H., Adris, A. M., Al-Ubaid, A. S. and Soliman, M. A., "On the Non-Monotonic Behaviour of Methane-Steam Reforming Kinetics," Chem. Eng. Sci., 45(2), 491-501(1990). https://doi.org/10.1016/0009-2509(90)87036-R
- Soliman, M. A., Adris, A. M., Al-Ubaid, A. S. and Elnashaie, S. S. E. H., "Intrinsic Kinetics of Nickel/Calcium Aluminate Catalyst for Methane Steam Reforming," J. Chem. Techol. Biotechnol., 55(2), 131-138(1992).
- Elnashaie, S. S. E. H., Adris, A. M., Soliman, M. A. and Al- Ubaid, A. S., "Digital Simulation of Industrial Steam Reformers for Natural Gas Using Heterogeneous Models," Can. J. Chem. Eng., 70(4), 786-793(1992). https://doi.org/10.1002/cjce.5450700424
- Elnashaie, S. S. E. H. and Abashar, M. E. E., "Steam Reforming and Methanation Effectiveness Factors Using the Dust Gas Model under Industrial Conditions," Chem. Eng. Process., 32(3), 177-189(1993). https://doi.org/10.1016/0255-2701(93)80014-8
- Ding, Y. and Alpay, E., "Adsorption-Enhanced Steam-Methane Reforming," Chem. Eng. Sci., 55(18), 3929-3940(2000). https://doi.org/10.1016/S0009-2509(99)00597-7
- Egea, J. A., Vries, D., Alonso, A. A. and Banga, J. R., "Global Optimization for Integrated Design and Control of Computationally Expensive Process Models," Ind. Eng. Chem. Res., 46(26), 9148-9157(2007). https://doi.org/10.1021/ie0705094
- Mansoornejad, B., Mostoufi, N. and Jalali-Farahani, F., "A Hybrid GA-SQP Optimization Technique for Determination of Kinetic Parameters of Hydrogenation Reactions," Comput. Chem. Eng., 32(7), 1447-1455(2007). https://doi.org/10.1016/j.compchemeng.2007.06.018
- Pacheco, M., Sira, J. and Kopasz, J., "Reaction Kinetics and Reactor Modeling for Fuel Processing of Liquid Hydrocarbons to Produce Hydrogen: Isooctane Reforming, " Appl. Catal. A: Gen., 250(1), 161-175(2003). https://doi.org/10.1016/S0926-860X(03)00291-6
- Michailos, S., "Kinetic Modelling and Dynamic Sensitivity Analysis of a Fast Pyrolysis Fluidised Bed Reactor for Bagasse Exploitation," Biofuels, Available online (2018).