DOI QR코드

DOI QR Code

Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst

니켈기반 촉매를 사용한 메탄가스-수증기 개질반응의 모사

  • Lee, HongJin (Hydrogen Laboratory, Korea Institute of Energy Research) ;
  • Kim, Woohyun (Hydrogen Laboratory, Korea Institute of Energy Research) ;
  • Lee, Kyubock (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yoon, Wang Lai (Hydrogen Laboratory, Korea Institute of Energy Research)
  • 이홍진 (한국에너지기술연구원 수소연구실) ;
  • 김우현 (한국에너지기술연구원 수소연구실) ;
  • 이규복 (충남대학교 에너지과학기술대학원) ;
  • 윤왕래 (한국에너지기술연구원 수소연구실)
  • Received : 2018.09.11
  • Accepted : 2018.10.30
  • Published : 2018.12.01

Abstract

The intrinsic kinetic parameters of steam-methane reforming reactions over commercial nickel-based catalyst were determined. The reaction rate equations were derived from the reaction mechanism-based Langmuir-Hinshelwood chemisorption theory. As the experimental variables for the kinetic study, the reaction temperature ranged from 630 to $750^{\circ}C$ and the steam-to-carbon ratio also varied from 2.7 to 3.5. Based on the experimental data, the efficient optimization algorithm was used to determine the intrinsic kinetic parameters due to the high-dimensional objective function. It is confirmed that the parameter estimation results showed good agreement with the experimental values. Thus, this proposed mathematical reaction model can be used as the basic information to design a catalytic reactor and to optimize operating conditions.

본 연구에서는 상용 니켈-알루미나 촉매를 이용한 메탄가스-수증기 개질반응에서의 고유반응속도 상수를 결정하였다. 반응메커니즘을 반영하기 위해 Langmuir-Hinshelwood chemisorption 이론에 기반한 반응속도식을 사용하였고 반응온도($630{\sim}750^{\circ}C$) 및 반응물의 분압(S/C ratio = 2.7~3.5)을 실험변수로 설정하였다. 실험을 통해 얻어진 데이터를 기반으로 효율적인 최적화 알고리즘을 이용하여 최적 고유반응속도상수들을 결정하였다. 최종적으로 제안된 이 수학적 반응 모델은 촉매반응기의 설계 및 운전조건 최적화에 활용 가능하다.

Keywords

HHGHHL_2018_v56n6_914_f0001.png 이미지

Fig. 1. Experimental apparatus for catalytic activity tests.

HHGHHL_2018_v56n6_914_f0002.png 이미지

Fig. 2. The effects of temperature (630~750℃) and S/C ratio (2.7- 3.5) on methane conversion (XCH4) & CO2 selectivity (SCO2).

HHGHHL_2018_v56n6_914_f0003.png 이미지

Fig. 3. Comparison of mole fraction between the experimental data and the predicted values (a) S/C 3.5 (b) S/C 3.0 (c) S/C 2.7 and (d) parity chart.

Table 1. Reaction mechanism in SMR

HHGHHL_2018_v56n6_914_t0001.png 이미지

Table 2. Equilibrium constants of reactions I, II and III

HHGHHL_2018_v56n6_914_t0002.png 이미지

Table 3. Boundary conditions of the intrinsic kinetic parameters

HHGHHL_2018_v56n6_914_t0003.png 이미지

Table 4. Catalyst characteristic

HHGHHL_2018_v56n6_914_t0004.png 이미지

Table 5. Experiment condition set

HHGHHL_2018_v56n6_914_t0005.png 이미지

Table 6. Comparison of kinetic parameters between this work and other researches

HHGHHL_2018_v56n6_914_t0006.png 이미지

References

  1. https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement.
  2. Numaguchi, T. and Kikuchi K., "Intrinsic Kinetics and Design Simulation in a Complex Reaction Network; Steam-Methane Reforming," Chem. Eng. Sci., 43(8), 2295-2301(1988). https://doi.org/10.1016/0009-2509(88)87118-5
  3. Kim, D. H. and Lee, T. J., "Kinetics of Methane Steam Reforming," Korean Chem. Eng. Res., 29(4), 396-406(1991).
  4. Sauk, J. K., Shul, Y. G., Jung, D. H., Kim, C. H., Shin, D. R. and Yang, J. C., "Effect of Crossover on the Performance of Direct Methanol Fuel Cell(DMFC)," Korean Chem. Eng. Res, 37(1), 21-26(1999).
  5. Yoon, W. L., Park, J. W., Rhee, Y. W., Han, M. W., Jeong, J. H., Park, J. S., Jung, H., Lee, H. T. and Kim, C. S., "Operating Characteristics of Integrated NG Reformer System for 5 kW Class PEM Fuel Cell," Korean Chem. Eng. Res., 41(3), 389-396(2003).
  6. Rostrup-Nielsen, T., "Manufacture of Hydrogen," Catal. Today, 106(1-4), 293-296(2005). https://doi.org/10.1016/j.cattod.2005.07.149
  7. Hoang, D. L., Chan S. H. and Ding, O. L., "Kinetic and Modelling Study of Methane Steam Reforming Over Sulfide Nickel Catalyst on a Gamma Alumina Support," Chem. Eng. Sci., 112(1-3), 1-11(2005). https://doi.org/10.1016/j.cej.2005.06.004
  8. Barelli, L., Bidini, G., Gallorini, F. and Servili, S., "Hydrogen Production Through Sorption-Enhanced Steam Methane Reforming and Membrane Technology: A Review," Energy, 33(4), 554-570(2008). https://doi.org/10.1016/j.energy.2007.10.018
  9. Oliveira, E. L. G., Grande, C. A. and Rodrigues, A. E., "Steam Methane Reforming in a $Ni/Al_2O_3$ Catalyst: Kinetics and Diffusional Limitations in Extrudates," Can. J. Chem. Eng., 87(6), 945-956(2009). https://doi.org/10.1002/cjce.20223
  10. Oliveira, E. L. G., Grande, C. A. and Rodrigues, A. E., "Methane Steam Reforming in Large Pore Catalyst," Chem. Eng. Sci., 65(5), 1539-1550(2010). https://doi.org/10.1016/j.ces.2009.10.018
  11. Avraam, D. G., Halkides, T. I., Liguras, D. K., Bereketidou, O. A. and Goula, M. A., "An Experimental and Theoretical Approach for the Biogas Steam Reforming Reaction," Int. J. Hydrog. Energy, 35(18), 9818-9827(2010). https://doi.org/10.1016/j.ijhydene.2010.05.106
  12. Park, J. E., Park, J. H., Yim, S. D., Kim, C. S. and Park, E. D., "A Comparative Study of Commercial Catalysts for Methanol Steam Reforming," Korean Chem. Eng. Res., 49(1), 21-27(2011). https://doi.org/10.9713/kcer.2011.49.1.021
  13. Maier, L., Schadel, B., Delgado H. K., Tischer, S. and Deutschmann, O., "Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism", Top. Catal., 54(13-15), 845-858(2011). https://doi.org/10.1007/s11244-011-9702-1
  14. Baek, S. M., Kang, J. H., Lee, K. J. and Nam, J. H., "A Numerical Study of the Effectiveness Factors of Nickel Catalyst Pellets Used in Steam Methane Reforming for Residential Fuel Cell Applications," Int. J. Hydrog. Energy, 39(17), 9180-9192(2014). https://doi.org/10.1016/j.ijhydene.2014.04.067
  15. Won, J. M., Park, G. W., Lee, J. W. and Hong S. C., "Study on Effects of $Ni/Al_2O_3$ Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions," Korean Chem. Res., 54(4), 560-567(2016). https://doi.org/10.9713/kcer.2016.54.4.560
  16. Abbas, S. Z., Dupont, V. and Mahmud, T., "Kinetics Study and Modelling of Steam Methane Reforming Process over a $NiO/Al_2O_3$ Catalyst in an Adiabatic Packed Bed Reactor", Int. J. Hydrog. Energy, 42(5), 2889-2903(2017). https://doi.org/10.1016/j.ijhydene.2016.11.093
  17. Akers, W. W. and Camp, D. P., "Kinetics of the Methane-Steam Reaction," AIChE J., 1(4), 471-475(1955). https://doi.org/10.1002/aic.690010415
  18. Ross, J. R. H. and Steel, M. C. F., "Mechanism of the Steam Reforming of Methane over a Coprecipitated Nickel-Alumina Catalyst," J. Chem. Soc. Faraday Trans. 1, 69, 10-21(1973).
  19. Rostrup-Nielsen, J. R., "Activity of Nickel Catalysts for Steam Reforming of Hydrocarbons," J. Catal., 31(2), 173-199(1973). https://doi.org/10.1016/0021-9517(73)90326-6
  20. Quach, T. Q. P. and Rouleau, D., "Kinetics of Methane-Steam Reaction Over Nickel Cataylst in a Continuous Stirred Tank Reactor," J. Appl. Chem. Biotechnol., 25(6), 445-459(1975). https://doi.org/10.1002/jctb.5020250607
  21. Munster, P. and Grabke, H. J., "Kinetics of the Steam Reforming of Methane with Iron, Nickel, and Iron-Nickel Alloys as Catalysts," J. Catal., 72(2), 279-287(1981). https://doi.org/10.1016/0021-9517(81)90010-5
  22. De Deken, J. C., Devos, E. F. and Froment, G. F., "Steam Reforming of Natural gas: Intrinsic Kinetics, Diffusional Influences, and Reactor Design, " Chem. Reaction Eng. Boston., 196(16), 181-197 (1982).
  23. Xu, J. and Froment, G. F., "Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics," AIChE J, 35(1), 88-96(1989). https://doi.org/10.1002/aic.690350109
  24. Ko, K. D., Lee, J. K., Park, D. K. and Shin S. H., "Kinetics of Steam Reforming Over a Ni/Alumina Catalyst," Korean Chem. Res., 12(4), 478-480(1995). https://doi.org/10.1007/BF02705814
  25. Hou, K. and Hughes, R., "The Kinetics of Methane Steam Reforming Over a $Ni/{\alpha}-Al_2O$ Catalyst," Chem. Eng. J., 82(1-3), 311-328 (2001). https://doi.org/10.1016/S1385-8947(00)00367-3
  26. Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. and Filippis, P. D., "Kinetic of Methane Steam Reforming reaction Over nickel- and Rhodium-Based Catalysts," Appl. Catal. A-Gen., 387(1-2), 147-154(2010). https://doi.org/10.1016/j.apcata.2010.08.017
  27. Jakobsen, J. H., Jakobsen, M., Chorkendorff, I. and Sehested, J., "Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst," Catal. Lett., 140(3-4), 90-97(2010). https://doi.org/10.1007/s10562-010-0436-7
  28. Pantoleontos, G., Kikkinides, E. S. and Georgiadis, M. C., "A Heterogeneous Dynamic Model for the Simulation and Optimization of the Steam Methane Reforming Reactor," Int. J. Hydrog. energy, 37(21), 16346-16358(2012). https://doi.org/10.1016/j.ijhydene.2012.02.125
  29. Elnashaie, S. S. E. H., Adris, A. M., Al-Ubaid, A. S. and Soliman, M. A., "On the Non-Monotonic Behaviour of Methane-Steam Reforming Kinetics," Chem. Eng. Sci., 45(2), 491-501(1990). https://doi.org/10.1016/0009-2509(90)87036-R
  30. Soliman, M. A., Adris, A. M., Al-Ubaid, A. S. and Elnashaie, S. S. E. H., "Intrinsic Kinetics of Nickel/Calcium Aluminate Catalyst for Methane Steam Reforming," J. Chem. Techol. Biotechnol., 55(2), 131-138(1992).
  31. Elnashaie, S. S. E. H., Adris, A. M., Soliman, M. A. and Al- Ubaid, A. S., "Digital Simulation of Industrial Steam Reformers for Natural Gas Using Heterogeneous Models," Can. J. Chem. Eng., 70(4), 786-793(1992). https://doi.org/10.1002/cjce.5450700424
  32. Elnashaie, S. S. E. H. and Abashar, M. E. E., "Steam Reforming and Methanation Effectiveness Factors Using the Dust Gas Model under Industrial Conditions," Chem. Eng. Process., 32(3), 177-189(1993). https://doi.org/10.1016/0255-2701(93)80014-8
  33. Ding, Y. and Alpay, E., "Adsorption-Enhanced Steam-Methane Reforming," Chem. Eng. Sci., 55(18), 3929-3940(2000). https://doi.org/10.1016/S0009-2509(99)00597-7
  34. Egea, J. A., Vries, D., Alonso, A. A. and Banga, J. R., "Global Optimization for Integrated Design and Control of Computationally Expensive Process Models," Ind. Eng. Chem. Res., 46(26), 9148-9157(2007). https://doi.org/10.1021/ie0705094
  35. Mansoornejad, B., Mostoufi, N. and Jalali-Farahani, F., "A Hybrid GA-SQP Optimization Technique for Determination of Kinetic Parameters of Hydrogenation Reactions," Comput. Chem. Eng., 32(7), 1447-1455(2007). https://doi.org/10.1016/j.compchemeng.2007.06.018
  36. Pacheco, M., Sira, J. and Kopasz, J., "Reaction Kinetics and Reactor Modeling for Fuel Processing of Liquid Hydrocarbons to Produce Hydrogen: Isooctane Reforming, " Appl. Catal. A: Gen., 250(1), 161-175(2003). https://doi.org/10.1016/S0926-860X(03)00291-6
  37. Michailos, S., "Kinetic Modelling and Dynamic Sensitivity Analysis of a Fast Pyrolysis Fluidised Bed Reactor for Bagasse Exploitation," Biofuels, Available online (2018).