• Title/Summary/Keyword: Langmuir isotherm

Search Result 594, Processing Time 0.026 seconds

Cadmium Adsorption and Exchangeable Cations Desorption in Soils: Effects of pH and Organic Matter Content (토양에서 카드뮴의 흡착과 치환성양이온의 탈착 : pH와 유기물함량의 영향)

  • 박병윤;신현무
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.243-252
    • /
    • 1996
  • In order to investigate the effects of pH and organic matter content on cadmium adsorption and exchangeable cations desorption in soils, the adsorption isotherms of cadmium and the desorption isotherms of calcium and magnesium on four New jersey soils at four pH values were plotted, and the cadmium partition coefficients (Kd) were also calculated. The slopes of cadmium adsorption isotherms dramatically increased with increasing solution pH. Judging from Langmuir adsorption equations, the maximum adsorption quantities(b) of cadmium at high pH values were much greater than those at low pH values for the same soil. The partition coefficients increased greatly with increasing solution pH. The slopes of regression equations between partition coefficients and pH values were steep in the order of the organic matter content of the soils. The correlation coefficients (r2) between partition coefficient and organic matter content for soils. The correlation coefficients (r2) between partition coefficient and organic matter content for $1\times10^{-4}$M increased from 0.3027 at pH 4.0 to 0.9964 at pH 8.5 and from 0.2093 at pH4.0 at 0.9657 at pH 8.5 for$2\times10^{-4}$M ${Cd(NO_3)}_2$. The desorption quantities of calcium and magnesium decreased with increasing solution pH and increased with- increasing cadmium adsorption.

  • PDF

Adsorption Characteristics of Co(II), Ni(II), Cr(III) and Fe(III) Ions onto Cation Exchange Resin - Application to the Demineralizing Process in a Primary Coolant System of PWR (양이온교환수지에 대한 Co(II), Ni(II), Cr(III), Fe(III) 이온의 흡착 특성 - 원자로 일차 냉각재 계통내 탈염 공정에의 적용)

  • Kang, So-Young;Lee, Byung-Tae;Lee, Jong-Un;Moon, Seung-Hyeon;Kim, Kyoung-Woong
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • Characteristics of Amberlite IRN 77, a cation exchange resin, and the mechanisms of its adsorption equilibria with Co(II), Ni(II), Cr(III) and Fe(III) ions were investigated for the application of the demineralizing process in the primary coolant system of a pressurized water reactor (PWR). The optimum dosage of the resin for removal of the dissolved metal ions at $200mgL^{-1}$ was 0.6 g for 100 mL solution. Most of each metal ion was adsorbed onto the resin in an hour from the start of the reaction. Each metal adsorption onto the resin could be well represented by Langmuir isotherms. However, in the case of Fe(III) adsorption, continuous formation of Fe-oxide or -hydroxide and its subsequent precipitation inhibited the completion of the equilibrium between the metal and the adsorbent Cobalt(II) and Ni(II), which have an equivalent electrovalence, were adsorbed to the resin with a similar adsorption amount when they coexisted in the solution. However, Cr(III) added to the solution competitively replaced Co(II) and Ni(II) which were already adsorbed onto the resin, resulting in desorption of these metals into the solution. The result was likely due to a higher adsorption affinity of Cr(III) than Co(II) and Ni(II). This implies that the interactively competitive adsorption of multi-cations onto the resin should be fully considered for an efficient operation of the demineralizing ion exchange process in the primary coolant system.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Allura Red from Aqueous Solution by Granular Activated Carbon (입상활성탄에 의한 수용액으로부터 오로라 레드의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.430-436
    • /
    • 2014
  • Allura Red (AR) is a water-soluble harmful tar-based food colorant (FD & C Red 40). Batch adsorption studies were performed for the removal of AR using bituminous coal based granular activated carbon as adsorbent by varying the operation parameters such as adsorbent dosage, initial concentration, contact time and temperature. Experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherms. The equilibrium process was described well by Freundlich isotherm. From determined separation factor ($R_L$), adsorption of AR by granular activated carbon could be employed as effective treatment method. Temkin parameter, B was determined to 1.62~3.288 J/mol indicating a physical adsorption process. By estimation of adsorption rate experimental data, the value of intraparticle diffusion rate constant ($k_m$) increased with the increasing adsorption temperature. The adsorption process were found to confirm to the pseudo second order model with good correlation. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The negative Gibbs free energy change (${\Delta}G$ = -2.16~-6.55 kJ/mol) and the positive enthalpy change (${\Delta}H$ = + 23.29 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Adsorption Dynamics of H2/CO2, H2/CO, H2/CH4 Mixtures in Li-X Zeolite Bed (Li-X 제올라이트 흡착탑에서 H2/CO2, H2/CO, H2/CH4 혼합기체의 흡착 동특성)

  • Park, Ju-Yong;Yang, Se-Il;Choi, Do-Young;Jang, Seong-Cheol;Lee, Chang-Ha;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.783-791
    • /
    • 2008
  • The dynamic characteristics of adsorption using an adsorption bed packed with Li-X zeolite (UOP) were studied through the breakthrough experiments of $H_2/CH_4$ (90:10 vol%), $H_2/CO$ (90:10 vol%) and $H_2/CO_2$ (80:20 vol%) mixtures. Effects of feed flow rate (6.24~10.24 LPM) and adsorption pressure (6.1 bar~10.1 bar) in the Li-X zeolite bed with 2.7 cm of inside diameter and 80 cm of bed length were observed. The smaller feed rate or the higher operating pressure, resulted in the longer of the breakthrough time and the breakthrough curve have tailing due to temperature variance in the bed. The adsorption dynamics of the Li-X zeolite bed were predicted by using LDF model with feed flow and pressure dependent diffusivity. The prediction and experimental data were analyzed with a nonisothermal, nonadiabatic model, dual-site langmuir (DSL) isotherm

Surface Micelle Formation of Polystyrene-b-Poly(2-vinyl pyridine) Diblock Copolymer at Air-Water Interface

  • Park, Myunghoon;Bonghoon Chung;Byungok Chun;Taihyun Chang
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.127-133
    • /
    • 2004
  • We have studied the surface micelle formation of polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) at the air-water interface. A series of four PS-b-P2VPs were synthesized by anionic polymerization, keeping the PS block length constant (28 kg/㏖) and varying the P2VP block length (1, 11, 28, or 59 kg/㏖). The surface pressure-area ($\pi$-A) isotherms were measured and the surface morphology was studied by atomic force microscopy (AFM) after Langmuir-Blodgett film deposition onto silicon wafers. At low surface pressure, the hydrophobic PS blocks aggregate to form pancake-like micelle cores and the hydrophilic P2VP block chains spread on the water surface to form a corona-like monolayer. The surface area occupied by a block copolymer is proportional to the molecular weight of the P2VP block and identical to the surface area occupied by a homo-P2VP. It indicates that the entire surface is covered by the P2VP monolayer and the PS micelle cores lie on the P2VP monolayer. As the surface pressure is increased, the $\pi$-A isotherm shows a transition region where the surface pressure does not change much with the film compression. In this transition region, which displays high compressibility, the P2VP blocks restructure from the monolayer and spread at the air-water interface. After the transition, the Langmuir film becomes much less compressible. In this high-surface-pressure regime, the PS cores cover practically the entire surface area, as observed by AFM and the limiting area of the film. All the diblock copolymers formed circular micelles, except for the block copolymer having a very short P2VP block (1 kg/㏖), which formed large, non-uniform PS aggregates. By mixing with the block copolymer having a longer P2VP block (11 kg/㏖), we observed rod-shaped micelles, which indicates that the morphology of the surfaces micelles can be controlled by adjusting the average composition of block copolymers.

Biosorption of Pb and Cd by Indigenous Bacteria Isolated from Soil Contaminated with Oil and Heavy Metals (유류와 중금속으로 오염된 토양에서 분리한 미생물의 Pb와 Cd 생물흡착 특성)

  • Kim, Sang-Ho;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.427-434
    • /
    • 2009
  • Indigenous bacterium which shows a tolerance to high metal toxicity was isolated from soil concomitantly contaminated with oil and heavy metals. The characteristics of the bacterium for Pb and Cd biosorption was investigated under the various experimental conditions such as bacterial growth phase, the initial metal concentration, the input biomass amount, temperature and pH. The Langmuir adsorption isotherm modeling was described to know the capacity and intensity of biosorption. The low initial concentration of heavy metals and high biomass has a maximum heavy metal removal efficiency, but biosorption capacity of Pb and Cd has different values. Biosorption efficiency was highest in the end of the microbial growth stage and under pH 5~9 condition, but was less affected by temperature variation of 25~$35^{\circ}C$. The maximum biosorption capacity for Pb and Cd was 62.11 and 192.31 mg/g, respectively and each $R^2$ was calculated as 0.71 and 0.98 by applying Langmuir isothermal adsorption equation. Biosorption for Cd was considered as monomolecular adsorption to single layer on the surface of cells, whereas biosorption for Pb was considered as accumulation process into the cell by the microbial metabolism and precipitation reaction with anion of bacteria.

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

Adsorption Behaviors of Amphiphilic AuNPs at the Interface between Diverse organic Solvents and Water (다양한 유기용매와 물 경계면에서의 양친매성 금나노입자의 흡착 거동)

  • Yeon-Su Lim;Yeong-min Lee;Kyo-Chan Koo;Hee-Young Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.157-161
    • /
    • 2024
  • Amphiphilic gold nanoparticles, synthesized by the simultaneous binding of hydrophilic and hydrophobic ligands on their surfaces, find diverse applications in energy, bio, optical, electronic technologies, and various other fields. Particularly, these amphiphilic gold nanoparticles possess both hydrophilic and hydrophobic characteristics, enabling them to activate interface at the interface of immiscible fluids and form organized structures. The surface properties of gold nanoparticles play a crucial role in influencing the behaviors of amphiphilic gold nanoparticles at the interface of two fluids. Therefore, this study investigated the adsorption behaviors of gold nanoparticles at the organic solvent-water interface based on the surface characteristics of amphiphilic gold nanoparticles and the type of organic solvents. It was observed that the amount of adsorbed gold nanoparticles at the interface increased with the length of hydrocarbon chains in hydrophobic ligands and increased with shorter hydrocarbon chains in the organic solvent. Furthermore, using the Langmuir isotherm model, the study confirmed the formation of a monolayer by amphiphilic gold nanoparticles and obtained significant thermodynamic parameters simultaneously.

Adsorption Characteristics of Sr ion and Cs ion by a Novel PS-zeolite Adsorbent Immobilized Zeolite with Polysulfone (Polysulfone으로 제올라이트를 고정화한 새로운 PS-zeolite 비드에 의한 Sr 이온 및 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.671-678
    • /
    • 2015
  • The adsorption characteristics of Sr and Cs ions were investigated by using PS-zeolite beads prepared by immobilizing zeolite with polysulfone (PS). The adsorption kinetics of Sr and Cs ions by PS-zeolite beads was described well by the pseudo-second-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 65.0 mg/g and 76.4 mg/g, respectively. In the binary system of Sr ion and Cs ion, the adsorption capacities of each ion decreased with increasing mole ratio of mixed counterpart ion, and Cs ion showed the higher hinderance than Sr ion. We found that thermodynamic properties of Sr and Cs ions on absorption reaction were spontaneous and endothermic at 293 to 323 K.

Influence of Temperature and pH on Adsorption of Ru(II) Dye from Aqueous Solution onto $TiO_2$ Films ($TiO_2$ 전극과 Ru(II) 염료와의 흡착에 있어서 온도 및 pH의 영향)

  • Hwang, Kyungjun;Yoo, Seungjoon;Shim, Wanggeum;Lee, Jaewook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.60.2-60.2
    • /
    • 2010
  • A $TiO_2$ films in dye-sensitized solar cells was fabricated using $TiO_2$ colloidal sol prepared from titanium iso-propoxide used as a starting material by applying the sol-gel method. It was characterized by particle size analyzer, XRD, FE-SEM, and BET analysis. The adsorption isotherms of dye molecule on $TiO_2$ films were obtained at three different temperatures (30, 45, $60^{\circ}C$) and at three different pH (3, 5, 7). The adsorption kinetics of dye molecule on $TiO_2$ films were obtained at three different temperatures (30, 45, $60^{\circ}C$. The adsorption experimental data were correlated with Langmuir isotherm model and pseudo-second-order model. Also the isosteric enthalpies of dye adsorption were calculated by the Clausius-Clapeyron equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of nanocrystalline $TiO_2$ film surface were calculated by using the generalized nonlinear regularization method. We found that efficient adsorption of N719 dye from aqueous solution onto $TiO_2$ films can be successfully achieved by dye adsorption conditions and morphology of $TiO_2$ films.

  • PDF