DOI QR코드

DOI QR Code

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Allura Red from Aqueous Solution by Granular Activated Carbon

입상활성탄에 의한 수용액으로부터 오로라 레드의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구

  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2014.06.23
  • Accepted : 2014.07.03
  • Published : 2014.08.10

Abstract

Allura Red (AR) is a water-soluble harmful tar-based food colorant (FD & C Red 40). Batch adsorption studies were performed for the removal of AR using bituminous coal based granular activated carbon as adsorbent by varying the operation parameters such as adsorbent dosage, initial concentration, contact time and temperature. Experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin isotherms. The equilibrium process was described well by Freundlich isotherm. From determined separation factor ($R_L$), adsorption of AR by granular activated carbon could be employed as effective treatment method. Temkin parameter, B was determined to 1.62~3.288 J/mol indicating a physical adsorption process. By estimation of adsorption rate experimental data, the value of intraparticle diffusion rate constant ($k_m$) increased with the increasing adsorption temperature. The adsorption process were found to confirm to the pseudo second order model with good correlation. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The negative Gibbs free energy change (${\Delta}G$ = -2.16~-6.55 kJ/mol) and the positive enthalpy change (${\Delta}H$ = + 23.29 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

오로라레드(Allura Red, AR)는 수용성의 유해한 타르계 식품착색제(적색 40호)이다. 역청탄계 입상활성탄을 사용한 AR의 회분식 흡착실험은 흡착제의 양, 초기농도, 접촉시간과 흡착온도를 조작변수로 선택하여 수행되었다. 흡착평형자료를 가지고 Langmuir와 Freundlich 및 Temkin 흡착등온식에 대한 적합성을 평가하였다. 흡착평형은 Langmuir 흡착등온식이 더 잘 맞았으며, 계산된 분리계수($R_L$) 값으로부터 입상활성탄이 AR을 효과적으로 처리할 수 있다는 것을 알 수 있었다. Temkin parameter, B의 값은 1.62~3.367 J/mol로 흡착공정이 물리흡착임을 나타내었다. 흡착속도실험으로부터, 입자내확산속도상수($k_m$)는 온도증가와 함께 커졌으며, 흡착공정은 유사이차반응속도식에 잘 맞았음을 알았다. 흡착공정의 특성을 평가하기 위하여 활성화에너지, 엔탈피, 엔트로피 및 Gibbs 자유에너지변화와 같은 열역학 파라미터들을 298~318 K의 온도 범위에서 조사하였다. Gibbs 자유에너지변화값(${\Delta}G$ = -7.02~-8.79 kJ/mol)과 엔탈피변화값(${\Delta}H$ = + 82.2 kJ/mol)으로부터 흡착공정이 자발적이고 흡열과정임을 알았다.

Keywords

References

  1. Ministry of Food and Drug Safety, Korea Food Additives Code, 1st ed. 28-35, Korea Food and Drug Administration, Seoul (2013).
  2. U. S. Food and Drug Administration, Food Color Facts, 2nd ed. 70-72, Intrnational Food Information Council Foundation, NY (1993).
  3. J. Y. Chang, A study on the tar dyes used in foods, 11-44, Ministry of Food and Drug Safety, (2005).
  4. European Food Safety Authority, Scientific option on the re-evaluation of allura red AC(E129) as a food additive, EFSA J., 7(11):1327, 1-39 (2009).
  5. H. M. Lee and C. O. Rhee, Analysis of tar color content in children's favorite foods, Korean J. Food Preserv., 12, 355-360 (2005).
  6. M. Wawrzkiewicz and Z. Hubicki, Kinetic studies of dyes sorption from aqueous solutions onto the strongly basic anion-exchanger Lewatit MonoPlus M-600, Chem. Eng. J., 150, 509-515 (2009). https://doi.org/10.1016/j.cej.2009.03.027
  7. J. S. Piccin, M. L. G. Vieira, J. O. Gonalves, G. L. Dotto, and L. A. A. Pinto, Adsorption of FD&C Red No. 40 by chitosan: Isotherms analysis, J. Food Eng., 95, 16-20 (2009). https://doi.org/10.1016/j.jfoodeng.2009.03.017
  8. M. A. Salem, S. T. Abdel-Halim, A. E. M. El-Sawy, and A. B. Zaki, Kinetics of degradation of allura red, ponceau 4R and carmosine dyes with potassium ferrioxalate complex in the presence of $H_2O_2$, Chemosphere, 76, 1088-1093 (2009). https://doi.org/10.1016/j.chemosphere.2009.04.033
  9. A. Pirkarami, M. E. Olya, and F. Najafi, Removal of azo dye from aqueous solution using an anionic polymeric urethane absorbent (APUA) J. Ind. Eng. Chem., Doi:10.1016/j.jiec.2014.02.050.
  10. H. Sutcu, Removal of FD&C Red No. 40 Food Dye from an Aqueous Solution by Vine-Trimming Waste, Int. J. Chem. Eng. Appl., 5, 420-423 (2014).
  11. J. J. Lee, Study on adsorption characteristics of erythrosine dye from aqeous solution using activated carbon, Appl. Chem. Eng., 22, 224-229 (2011).
  12. T. W. Weber and R. K. Chakrabarti, "Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions", Ind. Chem. Eng. Fund., 5, 212-223 (1996).
  13. P. Sivakumar and P. N. Palanisamy, Adsorption studies of basic red 29 by a non conventional activated carbon prepared from euphorbia antiquorum L, Int. J. Chem. Tech. Res, 1(3), 502-510 (2009).
  14. B. Hameed and M. El-Khaiary, Kinetics and equilibrium studies of Malachite Green adsorption on rice straw-derived char, J. Harzad. Mater., 153, 701-708 (2008), https://doi.org/10.1016/j.jhazmat.2007.09.019
  15. Y. Onal, C. A.. BaSar, D. Eren, C. S. Onalzdemir, and T. Depci, Adsorption kinetics of malachite green onto activated carbon prepared from Tuncbilek Lignite, J. Hazard. Mater., B128, 150-157 (2006).
  16. J. J. Lee and M. H. Um, Study of equilibrium, kinetic and thermodynamic parameters about fluorescein dye adsorbed onto activated carbon, Appl. Chem. Eng., 23, 450-455 (2012).
  17. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, Chem. Eng. J., 124, 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  18. V. K. Gupta, A. Mittal, and V. Gajbe, Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials, J. Colloid. Interf. Sci., 284, 89-98 (2005). https://doi.org/10.1016/j.jcis.2004.09.055
  19. M. U. Dural, L. C. Cavas, S. K. Papageorgiou, and F. T. Katsaros, Methylene blue adsorption on activated carbon prepared from Posidonia oceanica(L.) dead leaves: Kinetics and equilibrium studies, Chem. Eng. J., 168, 77-85 (2011). https://doi.org/10.1016/j.cej.2010.12.038
  20. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, and C. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: Equilibrium, kinetic and thermodynamic studies, Desalination, 254, 68-74 (2010). https://doi.org/10.1016/j.desal.2009.12.012
  21. A. Mittal, V. K. Gupta, A. Malviya, and J. Mittal, Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya, J. Hazard. Mater., 151, 821-832 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.059
  22. X. Peng, X. Hu, D. Fu, and F. L. Y. Lam, Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon, Appl. Surf. Sci., 294, 71-80 (2014). https://doi.org/10.1016/j.apsusc.2013.11.157
  23. A. Mittal, L. Kurup, and V. K. Gupta, Use of waste materials-Bottom Ash and De-Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solutions, J. Hazard Mater., B117, 171-178 (2005).