• Title/Summary/Keyword: Lane-Change

Search Result 238, Processing Time 0.029 seconds

Development of Traffic Management Strategies for Incident Conditions on Urban Highways Considering Traffic Safety (교통안전을 고려한 도시부도로의 돌발상황 교통관리전략 수립에 관한 연구)

  • Kim, Young Sun;Lee, Sang Soo;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.117-126
    • /
    • 2015
  • PURPOSES : This study aims to investigate the direct and indirect influence areas from incidents on urban interrupted roadways and to develop traffic management strategies for each influence area. METHODS : Based on a literature review, various traffic management strategies for certain incidents were collected. In addition, the relationship between the measure of effectiveness and the characteristics of incidents was explored using an extensive simulation study. RESULTS : From the simulation studies, traffic delays increased as the number of lane closures increased, and the impact of lane closures was reduced to the direction upstream from the incident site. However, the magnitude of the delay change depended on the degree of saturation. Using these characteristics, the direct and indirect influence areas resulting from incidents were defined, and traffic management strategies were established for each direct and indirect influence area and for each level of incident. CONCLUSIONS: The results of this study will contribute to the improvement of national traffic safety by preventing secondary incidents and by effective adaptation to incident events.

The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance (대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향)

  • Moon, Il-Dong;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle based on Driving Data (주행데이터 기반 자율주행 안전성 평가 시나리오 개발 및 검증)

  • Lim, Hyeongho;Chae, Heungseok;Lee, Myungsu;Lee, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.7-13
    • /
    • 2017
  • As automotive industry develops, the demand for increasing traffic safety is growing. Lots of researches about vehicle convenience and safety technology have been implemented. Now, the autonomous driving test is being conducted all over the world, and the autonomous driving regulations are also being developed. Autonomous vehicles are being commercialized, but autonomous vehicle safety has not been guaranteed yet. This paper presents scenarios that assess the safety of autonomous vehicles by identifying the minimum requirements to ensure safety for a variety of situations on highway. In assessing driving safety, seven scenarios were totally selected. Seven scenarios were related to lane keeping and lane change performance in certain situations. These scenarios were verified by analyzing the driving data acquired through actual vehicle driving. Data analysis was implemented via computer simulation. These scenarios are developed based on existing ADAS evaluation and simulation of autonomous vehicle algorithm. Also Safety evaluation factors are developed based on ISO requirements, other papers and the current traffic regulations.

Multi-Agent for Traffic Simulation with Vehicle Dynamic Model II : Development of Vehicle and Driver Agent (차량 동역학을 이용한 멀티에이전트 기반 교통시뮬레이션 개발 II : 운전자 및 차량 에이전트 개발)

  • 조기용;배철호;권성진;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.136-145
    • /
    • 2004
  • In companion paper, the composition and structure of the traffic environment is derived. Rules to regulate agent behaviors and the frameworks to communicate between the agents are proposed. In this paper, the model of a driver agent which controls a vehicle agent is constructed. The driver agent is capable of having different driving styles. That is, each driver agent has individual behavior settings of the yielding index and the passing index. The yielding index can be defined as how often the agent yields in case of lane changes, and the passing index can be defined as how often the agent passes ahead. According to these indices, the agents overtake or make their lanes for other vehicles. Similarly, the vehicle agents can have various vehicle dynamic models. According to their dynamic characteristics, the vehicle agent shows its own behavior. The vehicle model of the vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation has proceeded for an interrupted flow model. The result has shown that it is possible to express the characteristics of each vehicle and its driver in a traffic flow, and that the change of the traffic state is closely related with the distance and the signal delay between intersections. The system developed in this paper shows the effectiveness and the practical usefulness of the traffic simulation.

Analysis on Motorcycle Driving Behavior (이륜자동차 주행행태 분석 연구)

  • Kim, Hyeong-Gyu;Kim, Jin-Tae;Park, Jun-Tae;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.7-15
    • /
    • 2011
  • Emerged in early 1990s, so called 'Quick service' industry that provides faster delivery of small parcels than regular mail service accelerated use of motorcycles. As the economic grows, use of large bicycles (more than 250CC displacement) for leisure purpose has also rapidly increased. Traffic crash data clearly shows the increasing trend in motorcycle crashes. The ratio of motorcycle involved crashes out of total has increased from 5.7% in 2005 to 8.3% in 2008, and similar trend can be found in fatalities ratio as well. In this study, we assess the level of risk when motorcycles operate on motorways by analyzing traffic rule violation ratio, lane change behaviour, driving speed behaviors of motorcycles in Uninterrupted Traffic Flow Facilities and using PC-CRASH simulation we also calculate car shock impulses occurred when an accident happens. Analysis result shows that the motorcycle is different from the car in terms of lane change timing and average speed, and also shows motorcycle drivers tends to conduct more improper driving behavior particularly when traffic is congested. The results from this study could be usefully applied when the law enforcement agent decides whether bicycles shall be allowed to use motorways. The result could be also utilized as fundamental information for further study of bicycles' driving behavior.

A Study on a 4WS Vehicle Using Fuzzy Logic and Model Following Control (퍼지로직과 모델추종제어를 이용한 4륜 조향 차량에 관한 연구)

  • Baek, Seung-Ju;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.931-942
    • /
    • 1999
  • This paper develops a 3 DOF vehicle model which includes lateral, roll and yaw motion to study a 4WS vehicle. The model is used for the simulation of a 4WS vehicle behavior, and to derive a control algorithm for rear wheel steering. This paper uses a feedforward plus feedback control scheme to compute a rear wheel steering angle. The feedforward control scheme for computing the first rear wheel steering angle uses a gain which is acquired by multiplying a proper value on a gain to maintain a zero sideslip angle. The feedback control scheme for computing the second rear wheel steering angle uses fuzzy logic and model following control scheme. A linear 2 DOF model is used as a reference model for model following control, and is derived from the developed 3 DOF model by neglecting sprung mass roll motion. A reference state variable is yaw rate, and is computed using the linear 2 DOF model. J-turn and lane change maneuver simulation are performed to show the effectiveness of the developed control scheme. The simulation results show that the 4WS vehicle with the developed control scheme has much better performance in yaw rate, lateral acceleration, roll angle, and sideslip angle than the 2WS vehicle. Also, the results show that the performance of the developed control is close to the one of an optimal control which assumes all states are perfect.

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

Operational Effectiveness of Roundabout by the Change of Pedestrian Traffic Volume (보행교통량 변화에 따른 회전교차로의 운영효과)

  • In, Byung-Chul;Park, Min-Kyu;Park, Byung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.24-31
    • /
    • 2011
  • This study deals with the operational effectiveness of roundabout. The roundabout is currently under consideration in our country depending on the result of existing researches, that the roundabout decreases delay and is environmentally friendly compared to the signalized intersection. The purpose of the study is to analyze the operational effectiveness of the roundabout by the change of pedestrian traffic volume. In pursing the above, this study gave particular emphasis to designing a network of roundabout, developing some scenarios for analysis including both entering traffic volume and pedestrians volume, and comparatively analyzing the average controlled delay time per vehicle. In this study, VISSIM model was used as a tool for traffic simulation. The main results are as follows. First, as a result of analyzing a traffic delay based on the pedestrian traffic volume, pedestrian traffic volume was analyzed to have a great impact on the roundabout operation. Second, the more pedestrian traffic volume were evaluated to indicate the more traffic delay. When the entering volumes with 1,000persons/hour (pedestrian volume) were more than 800pcph in the single-lane and 1,600pcph in the double-lane roundabout, the operational efficiencies of signalized intersections were evaluated to be better than those of roundabouts.

Determination of Base Capacity Values for Short-Term Freeway Work Zone (고속도로 단기공사구간 기본용량 결정에 관한 연구)

  • Kim, Sang Gu;Hong, Gil Seong
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2013
  • Lane closure in freeway work zone due to maintenance and repair of freeway facilities results in abrupt change of traffic flow. Sudden change of traffic flow results strong interactions among vehicles, and reduces capacity compared to the ordinary traffic condition. Such capacity reduction is likely to cause congestion, traffic queues, and economic loss cost. This study aims to determine the base capacity for a short-term freeway work zone that can be used to establish a work zone schedule in advance without any traffic impact. First, the research collected detector data and schedule data of road works on all freeways in Korea. Second, the research determined 23 study sites finding the capacity values of work zone after matching two kinds of data. All study sites had varying characteristics regarding traffic flow being adjacent to work zone during road works. The capacity values were reviewed in terms of lane closure configuration, the types of work, and design speed. Finally, research proposed capacity values for a short-term freeway work zone with the design speeds of 100 kph, 120 kph and 1,700 pcphpl, 1,750 pcphpl, respectively.

Analysis of the Lateral Motion of a Tractor-Trailer Combination (II) Operator/Vehicle System with Time Delay for Backward Maneuver

  • Mugucia, S.W.;Torisu, R.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1147-1156
    • /
    • 1993
  • In order to analyze lateral control in the backward maneuver of a tractor -trailer combination , a kinematic vehicle model and a human operator model with time delay were utilized for the operator/vehicle system. The analysis was carried out using the frequency domain approach. The open-loop stability of the vehicle motion was analyzed through the transfer functions. The sensitivity of the stability of the vehicle motion. to a change in the steering angle, was also analyzed. A mathematical model of the closed -loop operator/vehicle system was then formulated. The closed -loop stability of the operator /vehicle system was then analyzed. The effect of the delay time on the system was also analyzed through computer simulation.

  • PDF