• Title/Summary/Keyword: Lane estimation

Search Result 130, Processing Time 0.024 seconds

A Study on the Estimation of Lane position using difference of Intensity (Intensity차를 이용한 차선의 위치 검출에 관한 연구)

  • 손경희;송현승;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.403-403
    • /
    • 2000
  • Generally estimation of driving direction uses the way which uses lane detection and vanishing point in autonomous-driving system. Especially we use Sub-window for decreasing Process time when we detect lane, but fixed sub-window can not detect lane because of some factors in road image. So we suggest algorithm using one-dimension line scan method to detect an exact position of lane.

  • PDF

Camera Calibration Method for an Automotive Safety Driving System (자동차 안전운전 보조 시스템에 응용할 수 있는 카메라 캘리브레이션 방법)

  • Park, Jong-Seop;Kim, Gi-Seok;Roh, Soo-Jang;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.621-626
    • /
    • 2015
  • This paper presents a camera calibration method in order to estimate the lane detection and inter-vehicle distance estimation system for an automotive safety driving system. In order to implement the lane detection and vision-based inter-vehicle distance estimation to the embedded navigations or black box systems, it is necessary to consider the computation time and algorithm complexity. The process of camera calibration estimates the horizon, the position of the car's hood and the lane width for extraction of region of interest (ROI) from input image sequences. The precision of the calibration method is very important to the lane detection and inter-vehicle distance estimation. The proposed calibration method consists of three main steps: 1) horizon area determination; 2) estimation of the car's hood area; and 3) estimation of initial lane width. Various experimental results show the effectiveness of the proposed method.

Lane Information Fusion Scheme using Multiple Lane Sensors (다중센서 기반 차선정보 시공간 융합기법)

  • Lee, Soomok;Park, Gikwang;Seo, Seung-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.142-149
    • /
    • 2015
  • Most of the mono-camera based lane detection systems are fragile on poor illumination conditions. In order to compensate limitations of single sensor utilization, lane information fusion system using multiple lane sensors is an alternative to stabilize performance and guarantee high precision. However, conventional fusion schemes, which only concerns object detection, are inappropriate to apply to the lane information fusion. Even few studies considering lane information fusion have dealt with limited aids on back-up sensor or omitted cases of asynchronous multi-rate and coverage. In this paper, we propose a lane information fusion scheme utilizing multiple lane sensors with different coverage and cycle. The precise lane information fusion is achieved by the proposed fusion framework which considers individual ranging capability and processing time of diverse types of lane sensors. In addition, a novel lane estimation model is proposed to synchronize multi-rate sensors precisely by up-sampling spare lane information signals. Through quantitative vehicle-level experiments with around view monitoring system and frontal camera system, we demonstrate the robustness of the proposed lane fusion scheme.

A Method for Virtual Lane Estimation based on an Occupancy Grid Map (장애물 격자지도 기반 가상차선 추정 기법)

  • Ahn, Seongyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Navigation in outdoor environments is a fundamental and challenging problem for unmanned ground vehicles. Detecting lane markings or boundaries on the road may be one of the solutions to make navigation easy. However, because of various environments and road conditions, a robust lane detection is difficult. In this paper, we propose a new approach for estimating virtual lanes on a traversable region. Estimating the virtual lanes consist of two steps: (i) we detect virtual road region through road model selection based on traversability at current frame and similarity between the interframe and (ii) we estimate virtual lane using the number of lane on the road and results of previous frame. To improve the detection performance and reduce the searching region of interests, we use a probability map representing the traversability of the outdoor terrain. In addition, by considering both current and previous frame simultaneously, the proposed method estimate more stable virtual lanes. We evaluate the performance of the proposed approach using real data in outdoor environments.

Estimation of Probe Vehicle Penetration Rates on Multi-Lane Streets Using the Locations of Probe Vehicles in Queues at Signalized Intersections (신호교차로 대기행렬 내 프로브 차량의 위치 정보를 활용한 다차로 접근로에서의 프로브 차량 비율 추정)

  • Moh, Daesang;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.133-141
    • /
    • 2021
  • The probe vehicle penetration rate is a required parameter in the estimation of entire volume, density, and queue length from probe vehicle data. The previous studies have proposed estimation methods without point detectors, which are based on probability structures for the locations of probe and non-probe vehicles; however, such methods are poorly suited to the case of multi-lane streets. Therefore, this study aimed to estimate the probe vehicle penetration rate at a multi-lane intersection and introduce a probability distribution of the queue length of each lane. Although a gap between estimates and observations was found, the estimates followed the trend of observations; the estimation could be improved by the correction factor hereafter. This study is expected to be used as a basic study for the estimation of entire volume, density, and queue length at multi-lane intersections without point detectors.

Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind (횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계)

  • Lim, Hyeongho;Joa, Eunhyek;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

Lane Detection Using Road Geometry Estimation

  • Lee, Choon-Young;Park, Min-Seok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.226-231
    • /
    • 1998
  • This paper describes how a priori road geometry and its estimation may be used to detect road boundaries and lane markings in road scene images. We assume flat road and road boundaries and lane markings are all Bertrand curves which have common principal normal vectors. An active contour is used for the detection of road boundary, and we reconstruct its geometric property and make use of it to detect lane markings. Our approach to detect road boundary is based on minimizing energy function including edge related term and geometric constraint term. Lane position is estimated by pixel intensity statistics along the parallel curve shifted properly from boundary of the road. We will show the validity of our algorithm by processing real road images.

  • PDF

Estimation of Vehicle Position and Orientation on Magnetic Lane Using 3-axis Magnetic Sensor (3축 자기센서를 이용한 자기차선상의 차량위치 및 방향 추정)

  • Ryoo, Young-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.373-379
    • /
    • 2000
  • In this paper, an estimation system of vehicle position and orientation on magnetic lane, which is a parameter of the steering controller for automated lane following is described. To verify that the magnetic dipole model could be applied to a magnetic unit paved in roadway, the analysis of the model is compared with the data of 3-axis magnetic field measured experimentally. The sensor location could be estimated by analysis of the model based on experimental data. For the magnetic lane model merged magnetic unit, the relation of sensor location and magnetic field is acquired experimentally. The proposed estimation of vehicle position and orientation is adopted to automated lane following by computer simulation.

  • PDF

Lane Detection-based Camera Pose Estimation (차선검출 기반 카메라 포즈 추정)

  • Jung, Ho Gi;Suhr, Jae Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.463-470
    • /
    • 2015
  • When a camera installed on a vehicle is used, estimation of the camera pose including tilt, roll, and pan angle with respect to the world coordinate system is important to associate camera coordinates with world coordinates. Previous approaches using huge calibration patterns have the disadvantage that the calibration patterns are costly to make and install. And, previous approaches exploiting multiple vanishing points detected in a single image are not suitable for automotive applications as a scene where multiple vanishing points can be captured by a front camera is hard to find in our daily environment. This paper proposes a camera pose estimation method. It collects multiple images of lane markings while changing the horizontal angle with respect to the markings. One vanishing point, the cross point of the left and right lane marking, is detected in each image, and vanishing line is estimated based on the detected vanishing points. Finally, camera pose is estimated from the vanishing line. The proposed method is based on the fact that planar motion does not change the vanishing line of the plane and the normal vector of the plane can be estimated by the vanishing line. Experiments with large and small tilt and roll angle show that the proposed method outputs accurate estimation results respectively. It is verified by checking the lane markings are up right in the bird's eye view image when the pan angle is compensated.

A New Lane Departure Warning System using a Support Vector Machine Classifier and a Fuzzy System

  • Kim, Sam-Yong;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.3-110
    • /
    • 2002
  • $\textbullet$ Lane detection by TFALDA $\textbullet$ SVM for large scale data and multiclass classification problem $\textbullet$ TLC Classification $\textbullet$ Lateral offset estimation by IPT $\textbullet$ Lane departure warning by a fuzzy system $\textbullet$ Experimental results by HiLS $\textbullet$ Conclusion

  • PDF