• Title/Summary/Keyword: Lane change maneuver

Search Result 22, Processing Time 0.019 seconds

Vision-Based Lane Change Maneuver using Sliding Mode Control for a Vehicle (슬라이딩 모드 제어를 이용한 시각센서 기반의 차선변경제어 시스템 설계)

  • 장승호;김상우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.194-207
    • /
    • 2000
  • In this paper, we suggest a vision-based lane change control system, which can be applied on the straight road, without additional sensors such as a yaw rate sensor and a lateral accelerometer. In order to reduce the image processing time, we predict a reference line position during lane change using the lateral dynamics and the inverse perspective mapping. The sliding mode control algorithm with a boundary layer is adopted to overcome variations of parameters that significantly affects a vehicle`s lateral dynamics and to reduce chattering phenomenon. However, applying the sliding mode control to the system with a long sampling interval, the stability of a control system may seriously be affected by the sampling interval. Therefore, in this paper, a look ahead offset has been used instead of a lateral offset to reduce the effect of the long sampling interval due to the image processing time. The control algorithm is developed to follow the desired trajectory designed in advance. In the design of the desired trajectory, we take account of the constraints of lateral acceleration and lateral jerk for ride comfort. The performance of the suggested control system is evaluated in simulations as well as field tests.

  • PDF

Analysis of Transient Maneuvers for Objectifying Evaluation of Vehicle Stability (차량 안정성 평가의 객관화를 위한 과도 운동 분석)

  • Kim, Jung-Sik;Kim, Young-Tae;Yoon, Yong-San
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.167-175
    • /
    • 2006
  • Directional stability is important performance in vehicle and tire design. The current methods to analyze this is generally based on linear concept. Using the existing concept, it cannot realistically explain the subjective assessment at all because it is hard to practically represent the nonlinear behaviour of a complex vehicle system in reality. In this paper, new method to analyze directional stability is introduced. At first, directional stability of vehicle is categorized into yaw, rear axle, and roll stability. In order to objectify these items, driver perceptual parameters based on subjective assessment are used. Using the perceptual parameters, it can successfully explain the transient maneuver of vehicle and extract objective parameters for directional stability. Finally, these objective parameters are successfully validated through two handling tests, lane change and severe lane change. The correlation results show that there exists a good correlation between subjective assessment and the proposed objective parameters.

Development of a Computer Model for the Turning Maneuver Analysis of a Heavy Truck (대형 트럭의 선회 주행특성 해석을 위한 컴퓨터 모델의 개발)

  • 문일동;권혁조;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.121-129
    • /
    • 2000
  • this paper develops a computational model for the turning maneuver analysis of a cabover type heavy truck. The model having 42 degree-of-freedom is developed using ADAMS. Leaf springs used in the front and rear suspension systems are modeled by dividing it three links and joining them with joints. Force and displacement relationship showing nonlinear hysteric characteristics of the leaf spring is measured and modeled with an exponential function. A velocity and force relationship of a shock absorber is measured and modeled with a spline function. And a stabilizer bar is modeled using ADAMS beam element to consider a twisting and bending effect. To verify the developed model an actual vehicle test is performed in the double lane change course with 50kph and 60kph vehicle velocity. In the actual vehicle test lateral acceleration roll angle and yaw rate are measured, The tendency and peak-to-peak values of the actual vehicle test and simultion results are compared each other.

  • PDF

Improvement of Vehicle Handling Performance due to Toe and Camber Angle Change of Rear Wheel by Using Double Knuckle (이중너클을 이용한 후륜 토 및 캠버각 변화를 통한 조종안정성 개선)

  • Sohn, Jeonghyun;Park, Seongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • In this study, suspension geometry is controlled to improve vehicle handling performance. The toe and camber of the rear suspension is controlled independently by using a double knuckle structure designed to enhance the vehicle cornering stability. Camber and toe changes in the rear wheel during high speed turning maneuver are important factors that influence the vehicle stability. Toe in the rear outer wheel plays a dominant role in cornering. A control algorithm for the camber and the toe angle input is developed to carry out the control simulation of the vehicle such as single lane change, the steady state cornering, the double lane change and the step steering simulation. Effects of the camber and toe angle control are analyzed from the computer simulations. A double lane change simulation revealed that the suspension mechanism with variable camber angle and variable toe angle decreases the peak body slip angle and peak yaw rate, 50% and 10%, respectively.

Analysis of The Lateral Motion of Tractor-Trailer Combination (I) Operator/Vehicle System Model for Forward Maneuver

  • Torisu, R.;Mugucia, S.W.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1137-1146
    • /
    • 1993
  • In order to analyze lateral control in the forward manuever of a tractor- trailer combination , a human operator model and a kinematic vehicle model were utilized for the operator/vehicle system. By combining the vehicle and operator models, a mathematical model of the closed-loop operator/vehicle system was formulated. A computer program was developed so as to simulate the motion of the tractor-trailer combination . In order to verify the operator/vehicle system model, the results of the field trials were compared with the simulated results. There was found to be reasonably good agreement between the two.

  • PDF

Dynamic Simulation using the Driver Model to Evaluate the Handling Performances (운전자 모델을 이용한 조종안정성능 평가 시뮬레이션)

  • 손희성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.1-8
    • /
    • 1997
  • The purpose of this study is to suggest the methods to model driver input and evaluate the handling performances of a vehicle by dynamic simulation using ADAMS (Automated Dynamic Analysis of Mechanical Systems) software. The driver input was modeled using the PID controller to follow the desired velocities and paths. The gains of the controller were decided by the trial and error methods aided by Ziegler-Nichols rule. It was successful to apply the rule for the vehicle model to follow the desired values of steady state cornering and lane change maneuver. As the results, handling performances of baseline and two variegated vehicles were evaluated. The theoretical provement was performed to explain the differences.

  • PDF

Neighboring Vehicle Maneuver Detection using IMM Algorithm for ADAS (지능형 운전보조시스템을 위한 IMM 기법을 이용한 전방차량 거동추정기법)

  • Jung, Sun-Hwi;Lee, Woon-Sung;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.718-724
    • /
    • 2013
  • In today's automotive industry, there exist several systems that help drivers reduce the possibility of accidents, such as the ADAS (Advanced Driver Assistance System). The ADAS helps drivers make correct and quick decisions during dangerous situations. This study analyzed the performance of the IMM (Interacting Multiple Model) method based on multiple Kalman filters using the data acquired from a driving simulator. An IMM algorithm is developed to identify the current discrete state of neighboring vehicles using the sensor data and the vehicle dynamics. In particular, the driving modes of the neighboring vehicles are classified by the cruising and maneuvering modes, and the transition between the states is modeled using a Markovian switching coefficient. The performance of the IMM algorithm is analyzed through realistic simulations where a target vehicle executes sudden lane change or acceleration maneuver.

A Study on a 4WS Vehicle Using Fuzzy Logic and Model Following Control (퍼지로직과 모델추종제어를 이용한 4륜 조향 차량에 관한 연구)

  • Baek, Seung-Ju;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.931-942
    • /
    • 1999
  • This paper develops a 3 DOF vehicle model which includes lateral, roll and yaw motion to study a 4WS vehicle. The model is used for the simulation of a 4WS vehicle behavior, and to derive a control algorithm for rear wheel steering. This paper uses a feedforward plus feedback control scheme to compute a rear wheel steering angle. The feedforward control scheme for computing the first rear wheel steering angle uses a gain which is acquired by multiplying a proper value on a gain to maintain a zero sideslip angle. The feedback control scheme for computing the second rear wheel steering angle uses fuzzy logic and model following control scheme. A linear 2 DOF model is used as a reference model for model following control, and is derived from the developed 3 DOF model by neglecting sprung mass roll motion. A reference state variable is yaw rate, and is computed using the linear 2 DOF model. J-turn and lane change maneuver simulation are performed to show the effectiveness of the developed control scheme. The simulation results show that the 4WS vehicle with the developed control scheme has much better performance in yaw rate, lateral acceleration, roll angle, and sideslip angle than the 2WS vehicle. Also, the results show that the performance of the developed control is close to the one of an optimal control which assumes all states are perfect.

Development of the Dynamic Model and Control Logic for the Rear Wheel Steering in 4WS Vehicle (후륜 조향 동력학 모델 및 제어 로직 개발)

  • 장진희;김상현;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.39-51
    • /
    • 1996
  • In the turning maneuver of the vehicle, its motion is mainly dependent on the genuine steering characteristics in view of the directional stability for stable turning ability. The under steer vehicle has an ability to maintain its own directonal performance for unknown external disturbances to some extent. From a few years ago, in order to acquire the more enhanced handling performance, some types of four wheel steering vehicle were considered and constructed. And, various rear wheel control logics for external disturbances has not been suggested. For this reason, in this posed rear wheel control logic is based on the yaw rate feed back type and is slightly modified by an yaw rate tuning factor for more stable turning performance. And an external disturbance is defined as a motivation of the additional yaw rate in the center of gravity by an uncertain input. In this study, an external disturbance is applied to the vehicle as a form of the additional yawing moment. Finally, the proposed rear wheel control logic is tested on the multi-body analysis software(ADAMS). J-turn and double lane change test are performed for the validation of the control logic.

  • PDF

Validation of a Vehicle Model and an ABS Controller with a Commercial Software Program (상용 소프트웨어를 이용한 차량 모델 및 ABS 제어기의 성능 평가)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.180-187
    • /
    • 2007
  • This paper presents a mathematical vehicle model that is designed to analyze the dynamic performance and to develop various safety control systems. Wheel slip controllers for ABS is also formulated to improve the vehicle response and to increase the safety on slippery road. Validation of the model and controller is performed by comparison with a commercial software package, CarSim. The result shows that performances of developed vehicle model are in good accordance with those of the CarSim on various driving conditions. Developed ABS controller is applied to the vehicle model and CarSim model, and it achieves good control performance. ABS controller improves lateral stability as well as longitudinal one when a vehicle is in turning maneuver on slippery road. A driver model is also designed to control steer angle of the vehicle model. It also shows good performance because the vehicle tracks the desired lane very well.