• Title/Summary/Keyword: Landslide characteristics

Search Result 197, Processing Time 0.025 seconds

Analysis of Impulse Wave Characteristics Generated by Landslide Models with Various Mass Ratio : Focus on Wave Amplitude (질량비 변화에 따른 산사태 모형으로 인해 생성되는 충격파의 특성분석 : 파진폭을 중심으로)

  • Hanwool Cho;Hojin Lee;Sungduk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • Impulse waves generated by landslides near water bodies can lead to fatal damage to human life and surrounding infrastructure. These impulse waves are generally called landslide-impulsed waves and occur without being limited to a specific area. Recently, localized torrential rains have frequently occurred due to the influence of abnormal weather, both the frequency and scale of landslides occurring in Korea are increasing. Therefore, in this study, the experiments were conducted according to the mass ratio of the landslide models, and among the characteristics of the generated landslide-impulse waves. And the wave amplitude was observed and analyzed. In this study, a total of 75 experiments were conducted by repeating the experiment 5 times for 15 cases with mass ratios of 5 landslide models and 3 types of slope angles. As a result of experiments with different mass ratios of landslide models, if the landslides have the same initial energy, the size of the landslide-impulse waves generated by mixing granular and block forms is higher than the size of the landslide-impulse waves generated by pure granular and block landslides. It is analyzed that the size may be larger.

Evaluation of the Application of Radar Data for Local Landslide Warning (국지적 산사태 발생 예보를 위한 레이더 자료의 활용성 평가)

  • Choi, Yun Seok;Choi, Cheon Kyu;Kim, Kyung Tak;Kim, Joo Hun
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.191-201
    • /
    • 2013
  • Landslide in Korea occurs generally in summer, and rainfall is a major factor to trigger landslides. This study evaluates the applicability of radar rainfall to estimate landslide occurs locally in mountainous area. Temporal changes in spatial distribution of rainfall is analyzed using radar data, and the characteristics of rainfall in landslide area during the landslide occurred in Inje, July 2006. This study shows radar rainfall field can estimate local landslides more precisely than the rainfall data from ground gauges.

Study on Landslide Flume Tests Using Stability Analysis of the Unsaturated Infinite Slope (불포화 무한사면의 안정해석을 활용한 산사태 모형실험에 관한 연구)

  • Song, Hyo-Sung;Chae, Byung-Gon;Song, Young-Suk;Choi, Jung-Hae;Seo, Won-Gyo;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.541-552
    • /
    • 2019
  • In this study, landslide flume tests were performed to analyze characteristics of ground characteristics and landslide occurrence due to rainfall infiltration. As test materials, weathered granite soil and gneiss soil, the most frequent landslides in Korea, were used, and landslides were triggered by heavy rain (Intensity = 200 mm/hr). The measurement sensors were installed with 3 sets at toe, slope, top part and shallow (GL-0.2 m), middle (GL-0.4 m), and deep (GL-0.6 m) depth in the slope and measured at 10 second intervals. After landslide flume tests, the slope stability analysis was performed by applying the unsaturated soil theory based on the change of ground characteristics and compared with actual landslide occurrence from flume test. As a result of the analysis, factor of safety reflected the landslide occurrence from flume test and factor of safety decreased as rainfall infiltration, leading to slope failure. Finally we compared to the factor of safety below 1 and actual landslide occurrence time, the average difference was 1,600 seconds for weathered granite soil and 5,400 seconds for weathered gneiss soil.

Analysis of Characteristics of Landslide Susceptibility in Rugged Mountain Range in the Korean National Park (산악형 국립공원지역의 산사태 발생과 취약지역 특성 분석)

  • Lee, Sung-Jae;Lee, Eun-Jai;Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.552-561
    • /
    • 2019
  • In korea, debris-flow disasters are induced by typhoon and localized torrential rainfall annually. These disasters are particularly severe in the Korean national park due to its geomorphological characteristics. This study was conducted to analyze the landslide characteristics and forest environmental factors of landslide areas located in rugged mountain range in the Korean national park (Mt. Seorak, Mt. Jiri, and Mt. Sobaek). Overall, landslides occurred at 474 sites. The average area of the landslide scar among these sites was 1,212 ㎡. The average landslide sediment was 1,389 ㎥, average landslide length was 75 m, and the average width was 12.9 m. The landslides frequently occurred in regions with igneous rock and coniferous forest. In addition, slope gradient degree (31°-40°), slope gradient direction (N), vertical slope (concave), cross slope (concave), altitude (401-800 m), position (middle), stream order (first order), forest type (mixed), parent rock (igneous), and soil depth (<46 cm). The relationship between landslide soil volume and environmental factors showed positive correlation. The variables of vertical slope (complex), altitude (<1,201 m), and soil depth (<46 cm) correlated significantly at 1 % level.

Analysis of Landslide Characteristics in Jeonlabuk-do, Korea (전라북도 지역의 산사태발생 특성분석)

  • Park, Chong-Min;Ma, Ho-Seop;Kang, Won-Seok;Oh, Kyeong-Won;Park, Seong-Hak;Lee, Sung-Jae
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.9-20
    • /
    • 2010
  • This study was carried out to analyze the landslide characteristics and forest environment factors on the landslide area of Jeonlabuk-do province in korea. The results obtained from this study were summarized as follows; The total number of landslide occurrence was 182 areas. The average area of landslide scar was $1,859m^2$, average length of the landslides was 139m, average width was 13m. The landslides were highly occurred in igneous rock and coniferous. And also, slope gradient was $21{\sim}30^{\circ}$, aspect was NE, altitude was 401~500m, vertical and cross slope was concave (凹),stream order was 1 order, soil depth was 15m below, landslide type was linear, forest type was artificial. The relationship between landslide area and environmental factors was a positive correlation with cross slope (convex), position (upper), altitude (501m), forest type (coniferous), parent rock (sedimentary rock), D.B.H. (over 17cm), but was negative correlation with slope gradient ($31{\sim}40^{\circ}$), parent rock (igneous rock), D.B.H. (6~16cm).

Analysis of Characteristics using Geotechnical Investigation on the Slow-moving Landslides in the Pohang-si Area (포항지역 땅밀림지의 지반조사를 통한 땅밀림 특성 분석)

  • Lee, Moon-Se;Park, Jae-Hyeon;Park, Yunseong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • The aim of this study was to provide basic data that could identify and help prevent a slow-moving landslide using an analysis of the relationship between below-ground characteristics and water from three slow-moving landslide areas in Pohang, Gyeongsangbuk-do, South Korea. Surface surveys, resistivity, seismic exploration, well logging, and boring surveys were conducted in the three areas. The main direction of discontinuous surface was matched with the slope direction of the three landslides. The results indicatedthat slow-moving landslides might occur in the direction of the slope. Underground water was distributed within the crush zones within the three landslide areas and flowed along the tensile cracks. There was a significant difference (p<0.01) between the mean angle of the tensile cracks and that of the underground waterflow (p=0.8019). These results indicated that the progress of a slow-moving landslide can be forecast by monitoring the location and flow of underground water within a known slow-moving landslide area.

Analysis on the Characteristics of Geomorphological Features Affecting the Initial State of Landslides (초기 산사태 발생에 영향을 미치는 지형요소의 특성분석)

  • Cha, A-Reum;Kim, Tai-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.61-68
    • /
    • 2014
  • The main objective of this study is to evaluate the preliminary landslide hazard based on the identification of geomorphological features, which are believed to be critical values in the initial state of landslides. Two methods, SINMAP and Planarity analyses, are used to simulate those characteristics where landslides are actually located. Results showed that both methods well discriminate geomorphic features between stable and unstable domains in the landslide areas. SINMAP analysis which is the consecutive model considering external factors like infiltration identifies the landslide hazard especially for debris flow type landslides better than plararity analysis focusing on a specific area. This analysis combined with other methods dealing with specific characteristics of geomorphological feature, the accurate landslide hazard will be evaluated.

Analysis of Landslides Characteristics in Korean National Parks (우리나라 국립공원지역의 산사태 발생특성 분석)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.611-619
    • /
    • 2007
  • This study was carried out to analyze the landslide characteristics and forest environment factors on the landslide area of 7 national parks in korea. The results obtained from this study were summarized as follows; The total number of landslide occurrence was 44 areas. The average length of the landslides scar was 152 m, average width was 17 m. And the average area was $2,818m^2$. The factors influencing landslides were highly occurred in Metamorphic rock, mixed forest type. And also, $30{\sim}35^{\circ}$ in slope gradient, NE in slope aspect, slope higher than 1,000 m, concave (凹) type in vertical and cross slope, 0 ordered stream. The main factors affecting landslide area in stepwise regression analysis were sheet type in landslided shape, NE in slope aspect, 2 ordered stream, SE in slope aspect, slope gradient and complex slope in cross slope type in order of regression coefficient.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 2. Rainfall Event-based Analysis (유역 내에서의 산사태에 의한 토사발생특성 분석 2. 강우사상별 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. The results of the analysis on characteristics of sediment produce according to rainfall events showed that the sediment produce by landslide was mainly contributed to rainfall intensity and its temporal clustering. The results of the analysis on characteristics of sediment produce by extreme events showed that remaining rainfall amount of typhoon 'Rusa' was much more than that of the other extreme events, and thus this remaining rainfall was to contribute to sediment transportation. Additionally, only a small number of extreme events were found to cause most amount of sediment produce in a basin.

Landslide Susceptibility Mapping Using Ensemble FR and LR models at the Inje Area, Korea (FR과 LR 앙상블 모형을 이용한 산사태 취약성 지도 제작 및 검증)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • This research was aimed to analyze landslide susceptibility and compare the prediction accuracy using ensemble frequency ratio (FR) and logistic regression at the Inje area, Korea. The landslide locations were identified with the before and after aerial photographs of landslide occurrence that were randomly selected for training (70%) and validation (30%). The total twelve landslide-related factors were elevation, slope, aspect, distance to drainage, topographic wetness index, stream power index, soil texture, soil sickness, timber age, timber diameter, timber density, and timber type. The spatial relationship between landslide occurrence and landslide-related factors was analyzed using FR and ensemble model. The produced LSI maps were validated and compared using relative operating characteristics (ROC) curve. The prediction accuracy of produced ensemble LSI map was about 2% higher than FR LSI map. The LSI map produced in this research could be used to establish land use planning and mitigate the damages caused by disaster.