• Title/Summary/Keyword: Landslide Susceptibility Mapping

Search Result 47, Processing Time 0.028 seconds

DETECTING LANDSLIDE LOCATION USING KOMSAT 1AND IT'S USING LANDSLIDE-SUSCEPTIBILITY MAPPING

  • Lee, Sa-Ro;Lee, Moung-Jin
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.840-843
    • /
    • 2006
  • The aim of this study was to detect landslide using satellite image and apply the landslide to probabilistic landslide-susceptibility mapping at Gangneung area, Korea using a Geographic Information System (GIS). Landslide locations were identified by change detection technique of KOMSAT-1 (Korea Multipurpose Satellite) EOC (Electro Optical Camera) images and checked in field. For landslide-susceptibility mapping, maps of the topography, geology, soil, forest, lineaments, and land cover were constructed from the spatial data sets. Then, the sixteen factors that influence landslide occurrence were extracted from the database. Using the factors and detected landslide, the relationships were calculated using frequency ratio, one of the probabilistic model. Then, landslide-susceptibility map was drawn using the frequency ration and finally, the map was verified by comparing with existing landslide locations. As the verification result, the prediction accuracy showed 86.76%. The landslide-susceptibility map can be used to reduce hazards associated with landslides and to land cover planning.

  • PDF

A Comparative Study of the Frequency Ratio and Evidential Belief Function Models for Landslide Susceptibility Mapping

  • Yoo, Youngwoo;Baek, Taekyung;Kim, Jinsoo;Park, Soyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.597-607
    • /
    • 2016
  • The goal of this study was to analyze landslide susceptibility using two different models and compare the results. For this purpose, a landslide inventory map was produced from a field survey, and the inventory was divided into two groups for training and validation, respectively. Sixteen landslide conditioning factors were considered. The relationships between landslide occurrence and landslide conditioning factors were analyzed using the FR (Frequency Ratio) and EBF (Evidential Belief Function) models. The LSI (Landslide Susceptibility Index) maps that were produced were validated using the ROC (Relative Operating Characteristics) curve and the SCAI (Seed Cell Area Index). The AUC (Area under the ROC Curve) values of the FR and EBF LSI maps were 80.6% and 79.5%, with prediction accuracies of 72.7% and 71.8%, respectively. Additionally, in the low and very low susceptibility zones, the FR LSI map had higher SCAI values compared to the EBF LSI map, as high as 0.47%p. These results indicate that both models were reasonably accurate, however that the FR LSI map had a slightly higher accuracy for landslide susceptibility mapping in the study area.

Determination and application of the weights for landslide susceptibility mapping using an artificial neural network

  • Lee, Moung-Jin;Won, Joong-Sun;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.71-76
    • /
    • 2003
  • The purpose of this study is the development, application and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence, For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.

  • PDF

Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea (로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로)

  • Al-Mamun, Al-Mamun;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.

THE CROSSING APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT KANGNEUNG, KOREA

  • LEE MOUNG-JIN;WON JOONG-SUN;LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.363-366
    • /
    • 2004
  • The purpose of this study is to reveal the spatial relationship between landslides and geospatial data set and to map the landslide susceptibility using this relationship, and the landslide occurrence data in Kangneung area in 2002. Landslide locations were identified from interpretation of satellite images. Landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Susceptibility maps were constructed from Geographic Information System (GIS), The cases were overlaid and cross overlaid for landslide susceptibility mapping in each study area in Kangneung.

  • PDF

Effect of Spatial Resolutions on the Accuracy to Landslide Susceptibility Mapping

  • Choi, J. W.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.138-140
    • /
    • 2003
  • The aim of this study is to evaluate the effect of spatial resolutions on the accuracy to landslide susceptibility mapping. For this, landslide locations were identified in the Boun, Korea from interpretation of aerial photographs and field surveys. The topographic, soil, forest, geologic, linearment and land use data were collected, processed and constructed into a spatial database using GIS and remote sensing data. The 15 factors that influence landslide occurrence were extracted and calculated from the spatial database with 5m, 10m, 30m, 100m and 200m spatial resolutions. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by probability model, likelihood ratio, for the five cases spatial resolutions. The results of the analysis were verified using the landslide location data. In the cases of spatial resolution 5m, 10m and 30m, the verification results was similar, but in the cases of 100m and 200m the results worse than the others. Because the scale of input data was 1:5,000 ? 1:50,000, so the cases of 5m, 10m and 30m have similar accuracy but the cases of 100m and 200m have the lower accuracy. From this, there is an effect of spatial resolutions on accuracy and landslide susceptibility mapping the result is dependent on input map.

  • PDF

Landslide Susceptibility Mapping for 2015 Earthquake Region of Sindhupalchowk, Nepal using Frequency Ratio

  • Yang, In Tae;Acharya, Tri Dev;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.443-451
    • /
    • 2016
  • Globally, landslides triggered by natural or human activities have resulted in enormous damage to both property and life. Recent climatic changes and anthropogenic activities have increased the number of occurrence of these disasters. Despite many researches, there is no standard method that can produce reliable prediction. This article discusses the process of landslide susceptibility mapping using various methods in current literatures and applies the FR (Frequency Ratio) method to develop a susceptibility map for the 2015 earthquake region of Sindhupalchowk, Nepal. The complete mapping process describes importance of selection of area, and controlling factors, widespread techniques of modelling and accuracy assessment tools. The FR derived for various controlling factors available were calculated using pre- and post- earthquake landslide events in the study area and the ratio was used to develop susceptibility map. Understanding the process could help in better future application process and producing better accuracy results. And the resulting map is valuable for the local general and authorities for prevention and decision making tasks for landslide disasters.

Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks (항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석)

  • Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The aim of this study is to detect landslide using digital aerial photography and apply the landslide to landslide susceptibility mapping by artificial neural network (ANN) and geographic information system (GIS) at Jinbu area where many landslides have occurred in 2006 by typhoon Ewiniar, Bilis and Kaemi. Landslide locations were identified by visual interpretation of aerial photography taken before and after landslide occurrence, and checked in field. For landslide susceptibility mapping, maps of the topography, geology, soil, forest, lineament, and landuse were constructed from the spatial data sets. Using the factors and landslide location and artificial neural network, the relative weight for the each factors was determinated by back-propagation algorithm. As the result, the aspect and slope factor showed higher weight in 1.2-1.5 times than other factors. Then, landslide susceptibility map was drawn using the weights and finally, the map was validated by comparing with landslide locations that were not used directly in the analysis. As the validation result, the prediction accuracy showed 81.44%.

Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review

  • Lee, Saro
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.179-193
    • /
    • 2019
  • Landslides are one of the most damaging geological hazards worldwide, threating both humans and property. Hence, there have been many efforts to prevent landslides and mitigate the damage that they cause. Among such efforts, there have been many studies on mapping landslide susceptibility. Geographic information system (GIS)-based techniques have been developed and applied widely, and are now the main tools used to map landslide susceptibility. We reviewed the status of landslide susceptibility mapping using GIS by number of papers, year, study area, number of landslides, cause, and models applied, based on 776 articles over the last 20 years (1999-2018). The number of studies published annually increased rapidly over time. The total study area spanned 65 countries, and 47.7% of study areas were in China, India, South Korea, and Iran, where more than 500 landslides, 27.3% of all landslides, have occurred. Slope (97.6% of total articles) and geology (82.7% of total articles) were most often implicated as causes, and logistic regression (26.9% of total articles) and frequency ratio (24.7% of total article) models were the most widely used models. We analyzed trends in the causes of and models used to simulate landslides. The main causes were similar each year, but machine learning models have increased in popularity over time. In the future, more study areas should be investigated to improve the generalizability and accuracy of the results. Furthermore, more causes, especially those related to topography and soil, should be considered and more machine learning models should be applied. Finally, landslide hazard and risk maps should be studied in addition to landslide susceptibility maps.

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT JANGHUNG, KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and then to apply these to the selected study area of Janghung in Korea. We aimed to verify the effect of data selection on training sites. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use was constructed. Thirteen landslide-related factors were extracted from the spatial database. Using these factors, landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Five different training datasets were applied to analyze and verify the effect of training. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. The results of the landslide susceptibility maps were verified and compared using landslide location data. GIS data were used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool to analyze landslide susceptibility.

  • PDF