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ABSTRACT :

The aim of this study was to detect landslide using satellite image and apply the landslide to

probabilistic landslide-susceptibility mapping at Gangneung area, Korea using a Geographic Information System (GIS).
Landslide locations were identified by change detection technique of KOMSAT-1 (Korea Multipurpose Satellite) EOC
(Electro Optical Camera) images and checked in field. For landslide-susceptibility mapping, maps of the topography,
geology, soil, forest, lineaments, and land cover were constructed from the spatial data sets. Then, the sixteen factors
that influence landslide occurrence were extracted from the database. Using the factors and detected landslide, the
relationships were calculated using frequency ratio, one of the probabilistic model. Then, landslide-susceptibility map
was drawn using the frequency ration and finally, the map was verified by comparing with existing landslide locations.
As the verification result, the prediction accuracy showed 86.76%. The landslide-susceptibility map can be used to
reduce hazards associated with landslides and to land cover planning.
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1. INTRODUCTION

Landslides are major natural geological hazards and
each year is responsible for enormous property damage
and both direct and indirect costs. Korea experiences
frequent landslides, with the most recent occurring in
1996, 1998, 1999, 2002 and 2006. They often result in
significant damage to people and property. From 20 to 31
August, typhoon Rusa has hit Gangneung area by storm
and heavy rainfall. The day-rainfall was 609mm and hour-
rainfall was 80mm. As the result, 266 people died and the
damage to property was about a value of § billion. Among
this, the 81 people died by landslide and collapse of cut-
slope. So, the Gangneung area was considered as study
area. Especially, among the Gangneung area, the
Sagimakri area is selected as study area because one of
the most landslides occurred area. The study area lies
between the 37° 45' N and 37° 50' N, and 128° 45' E and
128° 50" E, and covers an area of 47.94 km® (Fig. 1). The
geology is the study area is Granite.

In Gangneung, much damage was caused by the
landslides, which were due to the heavy rainfall, and,
because there was little effort to assess or predict the
event, damage was extensive. Through scientific analysis
of landslides, we can assess and predict landslide-
susceptible areas and, by allowing proper preparation,
decrease landslide damage. In order to achieve this, the
landslide locations were detected using satellite image
and landslide-susceptibility analysis techniques were
applied and verified using a frequency ratio model.
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Figure 1. The study area with KOMSAT-1 EOC image.

2. LANDSLIDE-LOCATION DETECTION USING
SATELLITE IMAGES

For probabilistic landslide hazard analysis, accurate
detection of the location of landslides is very important.
The application of remote sensing methods, such as aerial
photographs and satellite imagery, is used to obtain
significant and cost-effective information on landslides. A
field survey of the study area is the most exact detection
method. However, using field surveys as the initial
method is difficult, time-consuming and costly, especially
in mountainous areas where access is difficult or even
impossible. Thus, limited data are collected, and it is
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impossible to use complete landslide data in a probability
analysis. A field survey can be used to verify the result of
aerial photograph interpretation and satellite image
analysis.

In this study, 6.6m-resolution KOMSAT-1 EOC
images were used. This satellite takes images over a 24-
day period in the same area, so that the satellite images
can be compared before and after a landslide event.
However, resolution of the image (6.6m) can’t distinguish
small-scale landslides. The KOMSAT-1 ECO images
used to detect the landslide are December 7, 2001) (taken
before the landslides occurred) and December 14, 2002)
(after the landslides occurred). For change detection,
image difference method was used.

For change detection, the images were preprocessed by
doing geometric correction. The accurate geometrical
correction is very imported for change detection. So, the
image to image correction method has been applied. One
image was corrected geometrically using 1:5,000 scale
digital topographic map and the other image was
corrected geometrically using the previous image. The
second phase of preprocessing was done by atmospheric
correction. For the atmospheric correction, the image-
based model was used because the model doesn’t need
the information about atmospheric status of the image
during time of acquisition. Then, the histogram of the
image were matched by moving the histogram.

To make the change detection map, there are many
methods available such as band ratio, principal
components analysis and red green difference
image. Among the methods, the red green difference
method is used widely because the changed area can be
seen directly in red green difference method when pixel
value decreased, the pixel is viewed in Red color and
when pixel value is increased, the pixel is viewed in greed
color. This method is generally used wherever the change
is distinct. The image acquired after landslide occurrence
was used as red color layer. Then the landslide occurred
area, only the green color was shown because of the
increase in pixel value.

The landslide occurred areas are shown in Fig. 2. The
change detection reveals many changes; for example,
clouds, urban growth, river sediment change, and the
landslide. The changes that are not related to landslides
were excluded. Finally, based on the changed areas and
damaged areas which was surveyed by Gangwon
Province, the estimated landslide areas were selected.
Then the selected area was checked by the field survey
using GPS and 1:5,000 scale topographic maps. In total,
456 landslides were mapped within a total study area of
47.94 k. In this study area, the most of landslide is soil
slide and debris flow.
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Figure 2. Detectt:d landslides.
3.DATA

Identification and mapping of a suitable set of
instability factors bearing a relationship to slope failures
requires an a priori knowiedge of the main causes of
landslides (Guzzetti et al., 1999). These instability factors
include surface and bedrock lithology and structure,
bedding altitude, seismicity, slope steepness and
morphology, stream evolution, groundwater conditions,
climate, vegetation cover, land-use, and human activity.
The availability of thematic data varies largely, depending
on the type, scale, and method of data acquisition.

Table 1. Data layer of study area

Classification | Sub-Classification | Data Type Scale
Geological Landslide Point coverage | 1:5,000
Hazard
Topographic Map | Line and Point | 1:5,000
Geological Map coverage 1:250,000
Lineament Map Polygon 1:50,000
Drainage Lineament|  coverage 1:5,000
Basic Map Map Line coverage | 1:25,000
Soil Map Line coverage | 1:25,000
Forest Map Polygon
coverage
Polygon
coverage
Landsat TM GRID 30mx
Land Use GRID 30m
Image Data | KOMSAT Satellite Image Smx5m
Image 6.6mx
6.6m
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Sixteen factors were considered in calculating the
probability. The factors were extracted from the
constructed spatial database.

There were converted to ArcGIS GRID format and the
GRID set comprised 1,586 rows by 1,209 columns, for a
total cell number of 1,917,474. Landslides had occurred
in 456 of these cells.

4. METHODOLOGY

The spatial relationships between the landslide location
and each landslide-related factor were analysed by using
the probability model - frequency ratio. The frequency
ratio, a ratio between the occurrence and absence of
landslides in each cell, was calculated for each factor’s
type or range that had been identified as significant with
respect to causing landslides. The ratios of each factor’s
type or range were summed to calculate the landslide
susceptibility index (LSI), as shown in Eq. (1):

LSI=ZFr 0]
where Fr = the frequency ratio of each factors’ type or
range.

Using the LSI, landslide susceptibility map was made.
Finally, the susceptibility map was verified using existing
landslide locations. In this study, these two assumptions
are satisfied because the landslides are related to the
spatial information and all the landslides were
precipitated by a single cause, namely, heavy rainfall in
the Gangneung areas. For the verification, the calculated
LSI values of all cells in the study area were sorted in
descending order for all nine cases. Then, the landslides
(%) were divided into classes of accumulated area ratio
(%) according to the LSI value. To compare the result
quantitative, the areas under the curve (AUC) were re-
calculated as the total area is 1 which means perfect
prediction accuracy. So, the AUC can be used to assess
the prediction accuracy qualitatively.
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Figure 3. Landslides susceptibility maps using frequency
ratio model

5. LANDSLIDE SUSCEPTIBILITY MAPPING AND
VERIFICATION

Using the frequency ratio and Eq. (1), the LSI values
were computed. The computed LSI values were mapped
to allow interpretation such as that illustrated in Fig. 3.
The LSI values were classified into four classes (highest
10%, second 10%, third 20% and reminding 60%) based
on area for visual and easy interpretation.. If the LSI
value is high, there is a higher susceptibility to landslides;
a lower value indicates a lower susceptibility to landslides.
The minimum, mean, maximum and standard deviation
values of LSI are 7.78 16.00, 23.47 and 2.00 respectively.

The results of the landslide susceptibility analysis were
verified using the landslide locations for the same study
areas. The 90-100% (10%) class with the highest
probability of a landslide contains 54% of the landslides
(Fig. 4). The 80-100% class (20%) contains 75% and the
70-100% class (30%) contains 88% of the landslides of
Sagimakri area. To compare the result quantitative, the
AUC were re-calculated as the total area is 1. The dfkh
ratio was 0.8676 and I could say the prediction accuracy
is 86.76%.
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Figure 4. . llustration of cumulative frequency diagtam
showing landslide susceptibility index rank (x-axis) occurring
in cumulative percent of landslide occurrence (y-axis)

6. DISCUSSION AND CONCLUSIONS

Landslides are among the most hazardous of natural
disasters. Government and research institutions
worldwide have attempted for years to assess landslide
hazard and risk and to predict their spatial distribution. In
this study, detection of landslide using satellite image and
application of a probabilistic approach to estimating the
susceptible areas is presented using image process and
GIS. As the result, prediction accuracy showed the
86.76%. Generally, the verification results showed
satisfactory agreement between the susceptibility map and
the existing data on landslide location.

In this study, only the susceptibility analysis was
performed because the small area studied did not allow us
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to determine the distribution of rainfall. However, if data
on factors causing the landslides (such as rainfall,
earthquakes or slope cutting) exist, then a possibility
analysis could also be done. In particular, if the data
could be combined with a hydrological model, a more
accurate analysis would be possible. If the factors
relevant to the vulnerability of buildings and other
property were available, a risk analysis could also be
done. Landslide susceptibility maps are of great help to
planners and engineers choosing suitable locations for
development. These results can be used as basic data to

assist slope management and land-use planning.

Table 2. Spatial relationship between landslide and
related factors in Sagimakri area

No of Y%of | Noof | % of .
Factor Class pixels ) domain| landslide | landslide Ratio
domain

0~5 336945 § 17.57 0 0.00 }0.00

6~10 204758 | 10.68 2 044 10.04

11~15 311658 | 16.25 13 2.85 }0.18

16 ~20 362062 | 18.88 48 10.53 |0.56

Slope 21~25 322133 | 16.80 93 20.39 [1.21
26 ~30 217740 | 1136 | 157 34.43 (3.03

31~35 108568 | 5.66 99 2171 ]3.83

36~40 39827 | 2.08 29 636 |3.06

41~90 13783 | 0.72 15 329 |[4.58

Flat 82385 | 4.30 0 0.00 (0.00

North 226606 | 11.82 1 31 6.80 {0.58

Northeast 292155 | 15.24 56 12.28 10.81

East 299541 | 15.62 77 16.89 11.08

Aspect Southeast 247143 | 12.89 49 10.75 {0.83
South 165431 | 8.63 62 13.60 |1.58

Southwest 169659 | 8.85 46 10.09 |1.14

West 209333 | 10.92 78 17.11 |1.57

Northwest 225221 | 11.75 57 12.50 |1.06

Concave 557948 | 29.10 136 29.82 (1.02

Curvature Flat 785003 | 40.94 129 28.29 [0.69
Convex 574523 | 29.96 191 41.89 | 1.40

Buffer(100m) 1421849| 74.15 330 72.37 [0.98

Distance Buffer(200m) 374666 | 19.54 102 22.37 [1.14
from Buffer(300m) 86849 | 4.53 17 373 |0.82
Water Buffer(400m) 29718 | 1.55 7 1.54 [0.99
Buffer(> 400m)) 4392 | 023 0 0.00 |0.00

Geology Qranite . 1894865} 98.82 | 456 | 100.00 {1.01
Alluvial deposit 22609 | 1.18 0 0.00 [0.00

Buffer(100m) 466283 | 2432 | 235 51.54 {2.12

Distance Buffer(200m) 425867 | 22.21 116 2544 }1.15
from Buffer(300m) 325061 | 16.95 44 9.65 10.57
Lineament Buffer(400m) 242507 | 12.65 27 5.92 [0.47
Buffer(500m) 178295 | 9.30 20 439 |0.47

Buffer(> 500m)) 279461 | 14.57 14 3.07 ]0.21
Sandy loam 915636 | 47.75 | 47.75 | 61.18 | 1.28

Fine sandy loam 8648 | 0.45 0.45 0.00 ]0.00

Gravelly sandy loam 2625 | 0.14 | 0.14 022 |1.60

Loam 35391 | 1.85 1.85 0.88 |0.48

Soil Silt loam 32060 | 1.67 1.67 0.00 |0.00
Texture Gravelly loam 27715 | 145 145 1.10 |0.76
Overflow area 43180 | 2.25 225 044 |0.19

Rocky sandy 627654 | 32.73 | 32.73 ) 30.92 ]0.94

Rocky loam 224294 | 11.70 | 11.70 526 045

Gravelly sandy 271 0.01 0.01 0.00 |0.00

No data 43180 | 2.25 2 044 10.19

Poorly drained 110409 | 5.76 9 197 [0.34

Soil Somewhat poorly drained 97606 | 5.09 26 570 |1.12
Drainage Moderately well drained 25422 | 1.33 4 0.88 [0.66
‘Well drained 191337 | 9.98 32 7.02 [0.70

Excessively drained 1449520| 75.60 383 83.99 |1.11

No data 43180 | 2.25 2 044 |0.19

Colluvium 42908 | 2.24 6 132 [0.59

Soil Valley alluvium 289190 | 15.08 62 13.60 | 0.90
Material Granite residuum 1256190( 65.51 362 79.39 (1.21
Fluvial alluuium 61712 | 322 0 0.00 |0.00

Pluton residuum 224294 | 11.70 24 526 [0.45

No data 43180 | 2.25 2 0.44 [0.19

Soil Poorly shallow 7484 | 039 0 0.00 [0.00
Thickness Shallow 846156 | 44.13 165 36.18 [0.82
Normal 984026 | 51.32 | 284 62.28 f1.21

Deep 36628 | 1.91 5 1.10 [ 0.57

Non-forest 2255 | 117 | 25.66 114 114

Forest Borad leaf tree 1.87 9 1.97 1.06 |1.06
Type Pine 5406 | 253 | 5548 | 1.03 |1.03
Cuitivated 3.18 13 2.85 0.90 |0.90

Paper pulp 0.03 0 0.00 0.00 [0.00
Artificial pine 0.70 7 1.54 2.18 [2.18
Larch 4.38 18 3.95 090 (0.90
Korea nut pine 8.04 21 4.61 0.57 [0.57
Artificial rigida pine 029 | 3 | 066 | 231 {231
Mixing tree 4.90 15 3.29 0.67 |0.67
Non-forest 493960 | 25.76 | 130 | 2851 [1.11
Forest Very small diameter ( below 6cm) 262481 | 13.69 54 11.84 |0.87
Diameter Small diameter (6~ 16cm) 884637 | 46.14 | 230 50.44 [1.09
Medium diameter (16 ~28cm) 276396 | 1441 42 9.21 10.64
Non-forest 493960 | 25.76 130 2851 1.1
Forest More than 50% 1 ~ 10 years old timber | 262481 | 13.69 | 54 11.84 0.87
More than 50% 11~20 years old 595802 | 31.07 | 184 40.35 (1.30
Age More than 50% 21 ~30 years old timber| 301220 | 15.71 47 10.31 0.66
More than 50% 31 ~40 years old timber| 242658 | 12.66 35 7.68 |0.61
More than 50% 41 ~ 50 years old timber| 21353 | 1.11 6 132 |1.18
Non-forest 7564411 39.45 | 184 [ 4035 [1.02
Forest Loose 873578 | 45.56 | 196 42,98 j0.94
Density Moderate 200765 | 1047 | 54 11.84 [1.13
Dense 86690 | 4.52 22 482 |1.07
No data 0 0.00 0 0.00 |0.00
Water 4824 | 0.25 1 022 |(0.87
Land Urban 40134 | 2.09 20 439 {210
Cover Forest 1715778} 89.49 | 400 8772 10.95
Grass 45504 | 2.37 6 132 [0.55
Rice field 106446 | 5.55 27 592 |1.07
Barren 4680 | 0.24 2 0.44 |1.80
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