• Title/Summary/Keyword: Landslide Susceptibility Index

Search Result 29, Processing Time 0.025 seconds

A Comparative Study of the Frequency Ratio and Evidential Belief Function Models for Landslide Susceptibility Mapping

  • Yoo, Youngwoo;Baek, Taekyung;Kim, Jinsoo;Park, Soyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.597-607
    • /
    • 2016
  • The goal of this study was to analyze landslide susceptibility using two different models and compare the results. For this purpose, a landslide inventory map was produced from a field survey, and the inventory was divided into two groups for training and validation, respectively. Sixteen landslide conditioning factors were considered. The relationships between landslide occurrence and landslide conditioning factors were analyzed using the FR (Frequency Ratio) and EBF (Evidential Belief Function) models. The LSI (Landslide Susceptibility Index) maps that were produced were validated using the ROC (Relative Operating Characteristics) curve and the SCAI (Seed Cell Area Index). The AUC (Area under the ROC Curve) values of the FR and EBF LSI maps were 80.6% and 79.5%, with prediction accuracies of 72.7% and 71.8%, respectively. Additionally, in the low and very low susceptibility zones, the FR LSI map had higher SCAI values compared to the EBF LSI map, as high as 0.47%p. These results indicate that both models were reasonably accurate, however that the FR LSI map had a slightly higher accuracy for landslide susceptibility mapping in the study area.

Determination and application of the weights for landslide susceptibility mapping using an artificial neural network

  • Lee, Moung-Jin;Won, Joong-Sun;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.71-76
    • /
    • 2003
  • The purpose of this study is the development, application and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence, For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.

  • PDF

A Comparative Analysis of Landslide Susceptibility Using Airborne LiDAR and Digital Map (항공 LiDAR와 수치지도를 이용한 산사태 취약성 비교 분석)

  • Kim, Se Jun;Lee, Jong Chool;Kim, Jin Soo;Roh, Tae Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.281-292
    • /
    • 2014
  • This study examined the accuracy that produced using various types and combinations of landslide-related factors from landslide susceptibility index maps. A database of landslide-related factors was adopted by the landslide locations that obtained from aerial photographs, and the topographic factors that derived from airborne LiDAR observations and digital maps, and various soil, forest, and land cover. Landslide susceptibility index maps were calculated by logistic regression and frequency ratio from the landslide susceptibility index. The correlation between airborne LiDAR data and digital map was shown strong similarities with one another. Landslide susceptibility index maps indicated the existence of a strong correlation and high prediction accuracy, especially when the frequency ratio and airborne LiDAR were used. Therefore, we concluded that the Airborne LiDAR will contribute to the development of effective landslide prediction methods and damage reduction measures.

GIS-based Landslide Susceptibility Mapping of Bhotang, Nepal using Frequency Ratio and Statistical Index Methods

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of the study is to develop and validate landslide susceptibility map of Bhotang village development committee, Nepal using FR (Frequency Ration) and SI (Statistical Index) methods. For the purpose, firstly, a landslide inventory map was constructed based on mainly high resolution satellite images available in Google Earth Pro, and rest fieldwork as verification. Secondly, ten conditioning factors of landslide occurrence, namely: altitude, slope, aspect, mean topographic wetness index, landcover, normalized difference vegetation index, dominant soil, distance to river, distance to lineaments and rainfall, were derived and used for the development of landslide susceptibility map in GIS (Geographic Information System) environment. The landslide inventory of total 116 landslides was divided randomly such that 70% were used for training and remaining 30% for validating result by receiver operating characteristics curve analysis. The area under the curve were found to be greater than 0.7 indicating an acceptable susceptibility maps obtained using FR and SI methods in GIS for hilly region of Nepal.

LANDSLIDE SUSCEPTIBILITY MAPPING AND VERIFICATION USING THE GIS AND BAYESIAN PROBABILITY MODEL IN BOEUN, KOREA

  • Choi, Jae-Won;Lee, Sa-Ro;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.100-100
    • /
    • 2003
  • The purpose of this study is to reveals spatial relationships between landslides and geospatial data set, map the landslide susceptibility using the relationships and verify the landslide susceptibility using the landslide occurrence data in Bosun area in 1998. Landslide locations were detected from aerial photography and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database using GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. Is extract the relationship between landslides and geospatial database, Bayesian probability methods, likelihood ratio and weight of evidence, were applied and the ratio and contrast value that is W$\^$+/- W$\^$-/ were calculated. The landslide susceptibility index was calculated by summation of the likelihood ratio and contrast value and the landslide susceptibility maps were generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of landslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.

  • PDF

A Comparative Analysis of Landslide Susceptibility Assessment by Using Global and Spatial Regression Methods in Inje Area, Korea

  • Park, Soyoung;Kim, Jinsoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.579-587
    • /
    • 2015
  • Landslides are major natural geological hazards that result in a large amount of property damage each year, with both direct and indirect costs. Many researchers have produced landslide susceptibility maps using various techniques over the last few decades. This paper presents the landslide susceptibility results from the geographically weighted regression model using remote sensing and geographic information system data for landslide susceptibility in the Inje area of South Korea. Landslide locations were identified from aerial photographs. The eleven landslide-related factors were calculated and extracted from the spatial database and used to analyze landslide susceptibility. Compared with the global logistic regression model, the Akaike Information Criteria was improved by 109.12, the adjusted R-squared was improved from 0.165 to 0.304, and the Moran’s I index of this analysis was improved from 0.4258 to 0.0553. The comparisons of susceptibility obtained from the models show that geographically weighted regression has higher predictive performance.

Development of Artificial Neural Network Techniques for Landslide Susceptibility Analysis (산사태 취약성 분석 연구를 위한 인공신경망 기법 개발)

  • Chang, Buhm-Soo;Park, Hyuck-Jin;Lee, Saro;Juhyung Ryu;Park, Jaewon;Lee, Moung-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.499-506
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the newly developed techniques for assessment of landslide susceptibility to the study area of Yongin in Korea. Landslide locations were identified in the study area from interpretation of aerial Photographs and field survey data, and a spatial database of the topography, soil type and timber cover were constructed. The landslide-related factors such as topographic slope, topographic curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter were extracted from the spatial database. Using those factors, landslide susceptibility and weights of each factor were analyzed by two artificial neural network methods. In the first method, the landslide susceptibility index was calculated by the back propagation method, which is a type of artificial neural network method. Then, the susceptibility map was made with a GIS program. The results of the landslide susceptibility analysis were verified using landslide location data. The verification results show satisfactory agreement between the susceptibility index and existing landslide location data. In the second method, weights of each factor were determinated. The weights, relative importance of each factor, were calculated using importance-free characteristics method of artificial neural networks.

  • PDF

A Comparative Assessment of the Efficacy of Frequency Ratio, Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy in Landslide Susceptibility Mapping

  • Park, Soyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.67-81
    • /
    • 2020
  • The rapid climatic changes being caused by global warming are resulting in abnormal weather conditions worldwide, which in some regions have increased the frequency of landslides. This study was aimed to analyze and compare the landslide susceptibility using the Frequency Ratio (FR), Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy (IoE) at Woomyeon Mountain in South Korea. Through the construction of a landslide inventory map, 164 landslide locations in total were found, of which 50 (30%) were reserved to validate the model after 114 (70%) had been chosen at random for model training. The sixteen landslide conditioning factors related to topography, hydrology, pedology, and forestry factors were considered. The results were evaluated and compared using relative operating characteristic curve and the statistical indexes. From the analysis, it was shown that the FR and IoE models were better than the other models. The FR model, with a prediction rate of 0.805, performed slightly better than the IoE model with a prediction rate of 0.798. These models had the same sensitivity values of 0.940. The IoE model gave a specific value of 0.329 and an accuracy value of 0.710, which outperforms the FR model which gave 0.276 and 0.680, respectively, to predict the spatial landslide in the study area. The generated landslide susceptibility maps can be useful for disaster and land use planning.

Analysis of Susceptibility in Landslide Distribution Areas (산사태 발생지역에서의 민감성 분석에 관한 연구)

  • 양인태;유영걸;천기선;전우현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.381-384
    • /
    • 2004
  • The goal of this study is to generate a landslide susceptibility map using GIS(geographic information system) based method. A simple and efficient algorithm is proposed to generate a landslide susceptibility map from DEM(digital elevation model) and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, topographical index, landuse, vegetation are defined, because those factors are said to have relevance to landslide and are easy to obtain theirs sources. The weight value for landslide susceptibility is calculated from the density of the area of landslide blocks in each class. Finally, a map of susceptibility zones is produced using the weight value of all controlling factors, and then each susceptibility zone is evaluated by comparing with the distribution of each controlling factor class.

  • PDF

Landslide Susceptibility Analysis in Janghung Using Spatial Relationships between Landslide and Geospatial Information (산사태와 지형공간정보의 연관성 분석을 통한 장흥지역 산사태 취약성 분석)

  • 이사로;지광훈;박노욱;신진수
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • The purpose of this study is to analyze the landslide susceptibility, containing the process, which reveals spatial relationships between landslides and geospatial data sets, which occurred in Janghung area in 1998. Landslide locations were detected from remotely sensed image and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database in GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. To extract the relationship between landslides and geospatial database, likelihood ratio was calculated and compared with the result of Yongin area. Also, the landslide susceptibility index was calculated by summation of the likelihood ratio and the landslide susceptibility map was generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of lilndslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.

  • PDF