Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.34
no.4
/
pp.443-451
/
2016
Globally, landslides triggered by natural or human activities have resulted in enormous damage to both property and life. Recent climatic changes and anthropogenic activities have increased the number of occurrence of these disasters. Despite many researches, there is no standard method that can produce reliable prediction. This article discusses the process of landslide susceptibility mapping using various methods in current literatures and applies the FR (Frequency Ratio) method to develop a susceptibility map for the 2015 earthquake region of Sindhupalchowk, Nepal. The complete mapping process describes importance of selection of area, and controlling factors, widespread techniques of modelling and accuracy assessment tools. The FR derived for various controlling factors available were calculated using pre- and post- earthquake landslide events in the study area and the ratio was used to develop susceptibility map. Understanding the process could help in better future application process and producing better accuracy results. And the resulting map is valuable for the local general and authorities for prevention and decision making tasks for landslide disasters.
There are serious damage of people and properties every year due to landslides that are occurred by heavy rain. Because these phenomena repeat and the heavy rain is not an atmospheric anomaly, the counter plan becomes necessary. The study area, Ulsan, is one of the seven metropolitan, and largest cities of Korea and has many large facilities such as petrochemical complex and factories of automobile and shipbuilding. So it is necessary assess the landslide hazard potential. In the study. the three steps of landslide hazard assessment techniques such as susceptibility, possibility, and risk were performed to the study area using GIS. For the analyses, the topographic, geologic, soil, forest, meteorological, and population and facility spatial database were constructed. Landslide susceptibility representing how susceptible to a given area was assessed by overlay of the slope, aspect, curvature of topography from the topographic DB, type, material, drainage and effective thickness of soil from the soil DB, lype age, diameter and density from forest DB and land use. Then landslide possibility representing how possible to landslide was assessed by overlay of the susceptibility and rainfall frequency map, Finally, landslide risk representing how dangerous to people and facility was assessed by overlay of the possibil. ity and the population and facility density maps The assessment results can be used to urban and land use plan for landslide hazard prevention.
Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.
Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.
The rapid climatic changes being caused by global warming are resulting in abnormal weather conditions worldwide, which in some regions have increased the frequency of landslides. This study was aimed to analyze and compare the landslide susceptibility using the Frequency Ratio (FR), Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy (IoE) at Woomyeon Mountain in South Korea. Through the construction of a landslide inventory map, 164 landslide locations in total were found, of which 50 (30%) were reserved to validate the model after 114 (70%) had been chosen at random for model training. The sixteen landslide conditioning factors related to topography, hydrology, pedology, and forestry factors were considered. The results were evaluated and compared using relative operating characteristic curve and the statistical indexes. From the analysis, it was shown that the FR and IoE models were better than the other models. The FR model, with a prediction rate of 0.805, performed slightly better than the IoE model with a prediction rate of 0.798. These models had the same sensitivity values of 0.940. The IoE model gave a specific value of 0.329 and an accuracy value of 0.710, which outperforms the FR model which gave 0.276 and 0.680, respectively, to predict the spatial landslide in the study area. The generated landslide susceptibility maps can be useful for disaster and land use planning.
Nanehkaran, Yaser A.;Mao, Yimin;Azarafza, Mohammad;Kockar, Mustafa K.;Zhu, Hong-Hu
Geomechanics and Engineering
/
v.24
no.5
/
pp.407-418
/
2021
Due to the complexity of the causes of the sliding mass instabilities, landslide susceptibility and hazard evaluation are difficult, but they can be more carefully considered and regionally evaluated by using new programming technologies to minimize the hazard. This study aims to evaluate the landslide hazard zonation in the Tabriz region, Iran. A fuzzy logic-based multi-criteria decision-making method was proposed for susceptibility analysis and preparing the hazard zonation maps implemented in MATLAB programming language and Geographic Information System (GIS) environment. In this study, five main factors have been identified as triggering including climate (i.e., precipitation, temperature), geomorphology (i.e., slope gradient, slope aspect, land cover), tectonic and seismic parameters (i.e., tectonic lineament congestion, distribution of earthquakes, the unsafe radius of main faults, seismicity), geological and hydrological conditions (i.e., drainage patterns, hydraulic gradient, groundwater table depth, weathered geo-materials), and human activities (i.e., distance to roads, distance to the municipal areas) in the study area. The results of analyses are presented as a landslide hazard map which is classified into 5 different sensitive categories (i.e., insignificant to very high potential). Then, landslide susceptibility maps were prepared for the Tabriz region, which is categorized in a high-sensitive area located in the northern parts of the area. Based on these maps, the Bozgoosh-Sahand mountainous belt, Misho-Miro Mountains and western highlands of Jolfa have been delineated as risk-able zones.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.2
/
pp.59-66
/
2018
This study examined the correlation among topography, forest type, soil and geology in Inje area where landslides occurred during heavy rainfall from July 11 to July 18, 2006 to assess the landslide susceptibility. In order to assess the susceptibility of future landslides, landslides occurred in Inje area were classified into slide type and flow type, and slope angle, aspect, curvature, ridge and valley were extracted from the area. The landslide susceptibility was assessed by applying diameter class, age class, density, and forest type to Bayesianbased LR (Logistic Regression) model and WOE (Weight of Evidence) model, and the fitness of modeling was verified by predict rate curve. As the results of susceptibility assessment, using all landslides without no distintion, it was found that 75% of the LR model and 73% of the WOE model were fit in terms of the top 20% of the landslides. According to slide type and flow type in the top 20% of the landslides, it was found that 71% of the LR model and 69% of the WOE model were fit in terms of the slide type. Whereas, it was found that 86% of the LR model and 82% of the WOE model were fit in terms of the flow type. That is, the results of the LR model showed higher fitness than the results of the WOE model, and the fitness of the flow type was higher than that of the slide type. Consequently, it suggests that it is reasonable to assess and verify the landslide susceptibility according to the types of landslides.
The quantitative landslide susceptibility assessment methods can be divided into statistical approaches and geomechanical approaches based on the consideration of the triggering factors and landslide models. The geomechanical approach is considered as one of the most effective approaches since this approach proposes physical slope model and considers geomorphological and geomechanical properties of slope materials. Therefore, the geomechanical approaches has been used widely in landslide susceptibility analysis using the infinite slope model as physical slope model. However, the previous studies assumed constant groundwater level for broad study area without the consideration of rainfall intensity and hydraulic properties of soil materials. Therefore, in this study, landslide susceptibility assessment was implemented using the coupled infinite slope model with hydrologic model. For the analysis, geomechanical and hydrualic properties of slope materials and rainfall intensity were measured from the soil samples which were obtained from field investigation. For the practical application, the proposed approach was applied to Jinbu area, Gangwon-Do which was experienced large amount of landslides in July 2006. In order to compare to the proposed approach, the previous approach was used to analyze the landslide susceptibility using randomly selected groundwater level. Comparison of the results shows that the accuracy of the proposed method was improved with the consideration of the hydrologic model.
There are much damage of people and property because of heavy rain every year. Especially, there are problem to major facility such as dam, bridge, road, tunnel, and industrial complex in the ground stability. So the counter plan for landslide or ground failure must be necessary In the study, the technique of regional landslide susceptibility assessment near the Ulsan petrochemical complex and Kumgang railway bridge was developed and applied using GIS. For the assessment, the geological structures such as bedding and fault were surveyed and the geological structure, topographic, soil, forest, and land use spatial database were constructed using CIS. Using the spatial database, the factors that influence landslide occurrence, such as slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of forest, and land use were calculated or extracted from the spatial database. For application of geological structure, the geological structure line and fault density were calculated. Landslide susceptibility was analyzed using the landslide-occurrence factors by probability method that is summation of landslide occurrence probability values per each factors range or type. The landslide susceptibility map can be used to assess ground stability to protect major facility.
Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.