DOI QR코드

DOI QR Code

Assessment of Landslide Susceptibility using a Coupled Infinite Slope Model and Hydrologic Model in Jinbu Area, Gangwon-Do

무한사면모델과 수리학적 모델의 결합을 통한 강원도 진부지역의 산사태 취약성 분석

  • 이정현 (세종대학교 지구정보공학과) ;
  • 박혁진 (세종대학교 지구정보공학과)
  • Received : 2012.10.16
  • Accepted : 2012.12.14
  • Published : 2012.12.28

Abstract

The quantitative landslide susceptibility assessment methods can be divided into statistical approaches and geomechanical approaches based on the consideration of the triggering factors and landslide models. The geomechanical approach is considered as one of the most effective approaches since this approach proposes physical slope model and considers geomorphological and geomechanical properties of slope materials. Therefore, the geomechanical approaches has been used widely in landslide susceptibility analysis using the infinite slope model as physical slope model. However, the previous studies assumed constant groundwater level for broad study area without the consideration of rainfall intensity and hydraulic properties of soil materials. Therefore, in this study, landslide susceptibility assessment was implemented using the coupled infinite slope model with hydrologic model. For the analysis, geomechanical and hydrualic properties of slope materials and rainfall intensity were measured from the soil samples which were obtained from field investigation. For the practical application, the proposed approach was applied to Jinbu area, Gangwon-Do which was experienced large amount of landslides in July 2006. In order to compare to the proposed approach, the previous approach was used to analyze the landslide susceptibility using randomly selected groundwater level. Comparison of the results shows that the accuracy of the proposed method was improved with the consideration of the hydrologic model.

정량적인 산사태 취약성 분석은 산사태를 유발하는 인자 및 모델에 대한 접근방법에 따라 통계적 기법과 지질역학적 기법으로 구분된다. 이 중 지질역학적 기법은 산사태 모델을 가정하고 사면의 기하학적 특성과 사면 구성물질의 공학적 특성을 고려하여 산사태의 취약성을 판단하는 기법으로 산사태의 발생메커니즘과 과정을 고려할 수 있다는 장점을 가지고 있어 산사태의 취약성 분석에 가장 효과적인 기법 중의 하나로 보고되고 있다. 지질역학적 해석기법의 경우 최근 들어 무한사면모델이 주로 사면 모델로 사용되고 있으며 GIS의 활용을 통해 광역적인 지역에 대한 분석이 가능해짐에 따라 무한사면모델을 이용한 광역적인 지역에서의 산사태 취약성 분석이 가능해졌다. 기존의 무한사면모델을 활용한 연구의 경우 연구지역의 지하수위를 지반이나 강우의 특성에 대한 고려 없이 임의로 가정하여 해석함으로써 강우량과 연구지역의 지반특성에 따라 지하수위가 유동적으로 포화되는 것을 전혀 고려할 수 없는 문제점을 가지고 있다. 본 연구에서는 이를 보완하기 위해 산사태의 유발에 가장 큰 영향을 미치는 강우강도와 지반의 수리특성을 반영할 수 있는 수리학적 모델을 무한사면모델과 결합하여 연구지역의 현장 조건을 반영한 산사태 취약성 분석을 수행하였다. 또한 기존의 해석방법과 본 연구에서 제안된 해석기법을 비교분석하기 위하여 2006년 7월 대규모의 산사태가 발생한 강원도 진부지역을 대상으로 분석을 수행하였다. 그 결과 본 연구에서 제안된 해석기법이 기존의 해석기법에 비해 높은 예측 정확도를 보이는 것으로 분석되었다.

Keywords

References

  1. Aleotti, P. and Chowdhury, R. (1999) Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, v.58, p.21-44. https://doi.org/10.1007/s100640050066
  2. Apip, Takara, K., Yamashiki, Y., Sassa, K., Ibrahim, A.B. and Fukuoka, H. (2010) A distributed hydrologicalgeotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides, v.7, p.237-258. https://doi.org/10.1007/s10346-010-0214-z
  3. Beven, K.J. and Kirkby, M.J. (1979) A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, v.24, p.43-69. https://doi.org/10.1080/02626667909491834
  4. Chacón, J., Irigaray, C., Fernández, T. and El Hamdouni, R. (2006) Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, v.65, p.341- 411. https://doi.org/10.1007/s10064-006-0064-z
  5. Chen, C.Y., Chen, T.C., Yu, F.C. and Lin, S.C. (2005) Analysis of time-varying rainfall infiltration induced landslide. Environ Geol, v.48, p.466-479. https://doi.org/10.1007/s00254-005-1289-z
  6. D'Amato Avanzi, G., Falaschi, F., Giannecchini, R. and Puccinelli, A. (2009) Soil slip susceptibility assessment using mechanical-hydrological approach and GIS techniques: an application in the Apuan Alps. Natural Hazards, v.50, p.591-603. https://doi.org/10.1007/s11069-009-9357-4
  7. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E. and Savage, W.Z. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, v.102, p.85-98. https://doi.org/10.1016/j.enggeo.2008.03.022
  8. Frattini, P., Crosta, G.B., Fusi, N. and Negro, P.D. (2004) Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment. Engineering Geology, v.73, p.277-295. https://doi.org/10.1016/j.enggeo.2004.01.009
  9. Godt, J.W., Baum, R.L., Savage, W.Z., Salciarini, D., Schulz, W.H. and Harp, E.L. (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology, v.102, p.214-226. https://doi.org/10.1016/j.enggeo.2008.03.019
  10. Griffiths, D.V., Huang, J. and Fenton, G.A. (2011) Probabilistic infinite slope analysis. Computers and Geotechnics, v.38, p.577-584. https://doi.org/10.1016/j.compgeo.2011.03.006
  11. Ho, J.Y., Lee, K.T., Chang, T.C., Wang, Z.Y. and Liao, Y.H. (2012) Influence of spatial distribution of soil thickness on shallow landslide prediction. Engineering Geology, v.124, p.38-46. https://doi.org/10.1016/j.enggeo.2011.09.013
  12. Huang, J.C. and Kao, S.J. (2006) Optimal estimator for assessing landslide model performance. Hydrology and Earth System Science, v.10, p.957-965. https://doi.org/10.5194/hess-10-957-2006
  13. Huang, J.C., Kao, S.J., Hsu, M.L. and Lin, J.C. (2006) Stochastic procedure to extract and to integrate landslide susceptibility maps: An example of mountainous watershed in Taiwan. Natural Hazards and Earth System Sciences, v.6, p.803-815. https://doi.org/10.5194/nhess-6-803-2006
  14. Huang, J.C., Kao, S.J., Hsu, M.L. and Liu, Y.A. (2007) Influence of specific contributing area algorithms on slope failure prediction in landslide modeling. Natural Hazards and Earth System Sciences, v.7, p.781-792. https://doi.org/10.5194/nhess-7-781-2007
  15. Jang, H.D. and Yang, H.S. (2010) An analysis of stability on rock slope by changing water level. Journal of Korean Society for Rock Mechanics, v.20, p.7-14.
  16. Jelinek, R. and Wagner, P. (2007) Landslide hazard zonation by deterministic analysis (Velká Causa landslide area, Slovakia). Landslides, v.4, p.339-350. https://doi.org/10.1007/s10346-007-0089-9
  17. Kamai, T. (1991) Slope stability assessment by using GIS. Science and Technology Agency of Japan, in Japanese.
  18. Kwon, H.J., Park, J.B., Song, Y.W. and Lee, Y.S. (2009) Soil mechanics. 2nd ed. Goomibook. 557p.
  19. Liu, C. and Wu, C. (2008) Mapping susceptibility of rainfall- triggered shallow landslides using a probabilistic approach. Environmental Geology, v.55, p.907-915. https://doi.org/10.1007/s00254-007-1042-x
  20. Luzi, I. and Pergalani, F. (1996) Application of statistical and GIS techniques to slope instability zonation. Soil Dynamic and Earthquake Engineering, v.15, p.83-94. https://doi.org/10.1016/0267-7261(95)00031-3
  21. Montgomery, D.R. and Dietrich, W.E. (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research, v.30, p.1153- 1171. https://doi.org/10.1029/93WR02979
  22. National Disaster Management Institute (2000) Fundamental issues for landslide hazards avoidance or mitigation plans.
  23. Oh, H.J. (2010) Landslide susceptibility analysis and validation using Weight-of-Evidence model. Journal of the Geological Society of Korea, v.46, p.157-170.
  24. Pack, R.T., Tarboton, D.G. and Goodwin, C.N. (1998) The SINMAP approach to terrain stability mapping. Proceedings of 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada, p.1157-1165.
  25. Park, H.J., Lee, S. and Kim, J.W. (2003) Analysis and verification of slope disaster hazard using infinite slope model and GIS. Econ. Environ. Geol., v.36, p.313-320.
  26. Rosso, R., Rulli, M.C. and Vannucchi, G. (2006) A physically based model for the hydrologic control on shallow landsliding. Water Resources Research, v.42, W06410, doi:10.1029/2005WR004369.
  27. Santoso, A.M., Phoon, K.K. and Quek, S.T. (2011) Effects of soil spatial variability on rainfall-induced landslides. Computers and Structures, v.89, p.893-900. https://doi.org/10.1016/j.compstruc.2011.02.016
  28. Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L. and Michael, J.A. (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, v.3, p.181-194. https://doi.org/10.1007/s10346-006-0037-0
  29. Song, Y.S. and Hong, W.P. (2011) Analysis of slope stability with consideration of the wetting front and groundwater level during rainfall. The Journal of Engineering Geology, v.21, p.25-34. https://doi.org/10.9720/kseg.2011.21.1.025
  30. Terlien, M.T.J. (1996) Modeling spatial and temporal variations in rainfall triggered landslide. International Institute for Aerospace Survey and Earth Science, Publication No.32.
  31. Van Westen, C.J. and Terlien, M.T.J. (1996) An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes, v.21, p.853-868. https://doi.org/10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C
  32. Xie, M., Esaki, T. and Zhou, G. (2004) GIS-based probabilistic mapping of landslide hazard using a threedimensional deterministic model. Natural Hazards, v.33, p.265-282. https://doi.org/10.1023/B:NHAZ.0000037036.01850.0d
  33. Zhou, G., Esaki, T., Mitani, Y., Xie, M. and Mori, J. (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology, v.68, p.373-386. https://doi.org/10.1016/S0013-7952(02)00241-7

Cited by

  1. Assessment of Landslide Susceptibility of Physically Based Model Considering Characteristics of the Unsaturated Soil vol.47, pp.1, 2014, https://doi.org/10.9719/EEG.2014.47.1.49
  2. Proposed Landslide Warning System Based on Real-time Rainfall Data vol.26, pp.2, 2016, https://doi.org/10.9720/kseg.2016.2.197
  3. Assessment of shallow landslide susceptibility using the transient infiltration flow model and GIS-based probabilistic approach vol.13, pp.5, 2016, https://doi.org/10.1007/s10346-015-0646-6
  4. Maintenance of Hazardous Steep Slopes on National Park Trails vol.26, pp.1, 2016, https://doi.org/10.9720/kseg.2016.1.129