• Title/Summary/Keyword: Landsat-5

Search Result 368, Processing Time 0.025 seconds

Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data (고해상도 Landsat 8 위성자료기반의 지표면 온도 산출)

  • Jee, Joon-Bum;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.171-183
    • /
    • 2016
  • Land Surface Temperature (LST) retrieved from Landsat 8 measured from 2013 to 2014 and it is corrected by surface temperature observed from ground. LST maps are retrieved from Landsat 8 calculate using the linear regression function between raw Landsat 8 LST and ground surface temperature. Seasonal and annual LST maps developed an average LST from season to annual, respectively. While the higher LSTs distribute on the industrial and commercial area in urban, lower LSTs locate in surrounding rural, sea, river and high altitude mountain area over Seoul and surrounding area. In order to correct the LST, linear regression function calculate between Landsat 8 LST and ground surface temperature observed 3 Korea Meteorological Administration (KMA) synoptic stations (Seoul(ID: 108), Incheon(ID: 112) and Suwon(ID: 119)) on the Seoul and surrounding area. The slopes of regression function are 0.78 with all data and 0.88 with clear sky except 5 cloudy pixel data. And the original Landsat 8 LST have a correlation coefficient with 0.88 and Root Mean Square Error (RMSE) with $5.33^{\circ}C$. After LST correction, the LST have correlation coefficient with 0.98 and RMSE with $2.34^{\circ}C$ and the slope of regression equation improve the 0.95. Seasonal and annual LST maps represent from urban to rural area and from commercial to industrial region clearly. As a result, the Landsat 8 LST is more similar to the real state when corrected by surface temperature observed ground.

Spatial Analysis of Garorim bay by using Tidal Flat Surface Temperature and NDVI (가로림만의 갯벌 지표온도와 식생지수에 의한 공간분석)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • Human activity such as agriculture, industrial development and urban sprawl has been the major threat to wetlands ecosystem, which have caused the greatest losses of coastal wetlands. The Garorim bay provides one of the most important wetland habitate and Ministry of Oceans and Fisheries designated Garorim bay to marine ecosystem protected area in July 2016. The purpose of this research is to analysis the spatial pattern of Garorim bay using Landsat 5 (TM), Landsat 7 (ETM+), Landsat 8 (OLI & TIRS). The surface temperature and NDVI of Garorim bay were processed with spatial analysis method and time series analysis were applied to 25 years Landsat satellite 19 images. The results of time series distribution map compared with the several wetland habitate on remotely sensed images. Landsat images showed the change area of wetland vegetation distribution from 1988 to 2014. The southern part habitate of Garorim bay have been changed with vegetation patterns on coastal wetland which were covered with tidal flat.

Analysis of the Relationship Between Land Cover and Land Surface Temperature at Cheongju Region Using Landsat Images in Summer Day (LANDSAT영상을 이용한 여름철 청주지역의 토지피복과 지표면온도와의 관계 분석)

  • Park, Jong-Hwa;Kim, Jin-Soo;Na, Sang-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.39-48
    • /
    • 2006
  • The objective of this research was to find an indirect method to estimate land surface temperature (LST) efficiently, using Landsat images. Agricultural fields including paddy fields have long been known to have multi-functions beneficial to the environment and ecology of the urban surrounding areas. Among these functions, the ambient temperature cooling (ATC) effect is widely acknowledged. However, quantitative and regional assessment of such effect has not been performed. Thermal remote sensing has been used over urban areas to assess the ATC effect, Thermal Island Effect(TIE), and as input for models of urban surface atmosphere exchange. Here, we review the use of thermal remote sensing in the study of paddy fields and urban climates, focusing primarily on the ATC effect. Landsat satellite images were used to determine the surface temperatures of different land cover types of a $44km^{2}$ study area in Cheongiu, Korea. The results show that the ATC is a function of paddy area percentage in Landsat pixels. Landsat pixels with higher paddy area percentage have much more cooling effect. The use of satellite data may contribute to a globally consistent method for analysis of ATC effect.

The Integration of GIS with LANDSAT TM Data for Ground Water Potential Area Mapping (I) - Extraction of the Ground Water Potential Area using LANDSAT TM Data - (지하수 부존 가능지역 추출을 위한 LANDSAT TM 자료와 GIS의 통합(I) - LANDSAT TM 자료에 의한 지하수 부존 가능지역 추출 -)

  • 지종훈
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.1
    • /
    • pp.29-43
    • /
    • 1991
  • The study was performed to extraction the ground water potential area using LANDSAT TM data. The image processing techniques developed for the study are contrast transformation, differential filtering and pseudo stereoscopic image methods. These were examined for lineament extraction, lineament interpretation and the integration of vertor data with LANDSAT data. The differential filtering method is much usefull for lineament extraction, and all direction lineaments are clearly shown on the band 5 image of LANDSAT TM. The pseudo stereoscopic image are made in which color differential method is adopted, the pair images are usefull for the lineament interpretation. The results of the analysis are as follows. 1) there is a close correlation between lineament and cased well in the study area, because 33 wells of the developed 45 cased wells coincide with the lineaments. 2) 21 sites in the study area were selected for pumping test, and as a result 11 sites of them produces over than 200 ton/day.

Estimation of ambient PM10 and PM2.5 concentrations in Seoul, South Korea, using empirical models based on MODIS and Landsat 8 OLI imagery

  • Lee, Peter Sang-Hoon;Park, Jincheol;Seo, Jung-young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Particulate matter (PM) is regarded as a major threat to public health and safety in urban areas. Despite a variety of efforts to systemically monitor the distribution of PM, the limited amount of sampling sites may not provide sufficient coverage over the areas where the monitoring stations are not located in close proximity. This study examined the capacity of using remotely sensed data to estimate the PM10 and PM2.5 concentrations in Seoul, South Korea. Multiple linear regression models were developed using the multispectral band data from the Moderate-resolution imaging spectro-radiometer equipped on Terra (MODIS) and Operational Land Imager equipped on Landsat 8 (Landsat 8) and meteorological parameters. Compared to MODIS-derived models (r2 = 0.25 for PM10, r2 = 0.30 for PM2.5), the Landsat 8-derived models showed improved model reliabilities (r2 = 0.17 to 0.57 for PM10, r2 = 0.47 to 0.71 for PM2.5). Landsat 8 model-derived PM concentration and ground-truth PM measurements were cross-validated to each other to examine the capability of the models for estimating the PM concentration. The modeled PM concentrations showed a stronger correlation to PM10 (r = 0.41 to 0.75) than to PM2.5 (r = 0.14 to 0.82). Overall, the results indicate that Landsat 8-derived models were more suitable in estimating the PM concentrations. Despite the day-to-day fluctuation in the model reliability, several models showed strong correspondences of the modeled PM concentrations to the PM measurements.

ATMOSPHERIC CORRECTION OF LANDSAT SEA SURFACE TEMPERATURE BY USING TERRA MODIS

  • Kim, Jun-Soo;Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.864-867
    • /
    • 2006
  • Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in $R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean.

  • PDF

How is SWIR useful to discrimination and a classification of forest types?

  • Murakami, Takuhiko
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.760-762
    • /
    • 2003
  • This study confirmed the usefulness of short-wavelength infrared (SWIR) in the discrimination and classification of evergreen forest types. A forested area near Hisayama and Sasaguri in Fukuoka Prefecture, Japan, served as the study area. Warm-temperate forest vegetation dominates the study site vegetation. Coniferous plantation forest, natural broad-leaved forest, and bamboo forest were analyzed using LANDSAT5/TM and SPOT4/HRVIR remote sensing data. Samples were extracted for the three forest types, and reflectance factors were compared for each band. Kappa coefficients of various band combinations were also compared by classification accuracy. For the LANDSAT5/TM data observed in April, October, and November, Bands 5 and 7 showed significant differences between bamboo, broad-leaved, and coniferous forests. The same significant difference was not recognized in the visible or near-infrared regions. Classification accuracy, determined by supervised classification, indicated distinct improvements in band combinations with SWIR, as compared to those without SWIR. Similar results were found for both LANDSAT5/TM and SPOT4/HRVIR data. This study identified obvious advantages in using SWIR data in forest-type discrimination and classification.

  • PDF

Observation of Forest Change and Estimation of Tree Ages of the Conifer over Kangwon-do by using Multi-Temporal, November-Landsat Images (다중시기 11월 Landsat 영상을 이용한 강원도 일대 임상의 변화관찰 및 상록수 영급의 구분)

  • Jeon Kyeong-Mi;Lee Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.210-213
    • /
    • 2006
  • 이 연구에서는 다중시기 Landsat 영상을 이용하여 강원도 일대 임상의 변화를 살펴보고 상록수의 영급을 구분하는 알고리즘을 개발하여 적용하였다. 1980년대에서 현재까지 축적된 Landsat-5와 Landsat-7영상 중에서, 대부분 지역에 활잡목 및 활엽수가 낙엽이 지고 눈이 아직 쌓이지 않을 시기인 11월에 촬영된 영상만을 이용하였다. 각 영상에서 양지바른 상록수, 활엽수, 그늘진 지역, 도시 및 바다 등을 클래스로 지정하여 감돌분류를 하였다. 분류 결과에서 양지바른 상록수만 추출하여 5개의 영상을 이진 분류체계로 조합한 후 임상의 시기적 변화 양상을 관찰한 결과, 강원대 연습림의 조림 기록 및 현황도와 상당히 일치함을 확인하였으며, Path 115, Row 34에 해당하는 강원도 일대로 연구지역을 확대하였다. 향후 Kompsat-2를 비롯한 고해상도 11월 영상이 지속적으로 촬영된다면, 이 연구에서 개발된 이진 분류체계 방법을 통하여 산림변화의 모니터링을 보다 용이하고 효율적으로 할 수 있을 것으로 기대된다.

  • PDF

Estimating the Forest Cover Types on Experimental Forest of Kangwon National University using Landsat-5 TM data (Landsat-5 TM 위성의 영상자료를 이용한 강원대학교 연습림의 임상분석)

  • Woo, Jong-Choon;Kim, Han-Soo;Won, Hyun-Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.65-70
    • /
    • 1999
  • The study analyze Conifer and Hardwood area and their distribution to seek an efficient survey for Experimental Forest of Kangwon National University using Landsat-5 TM data. Through forest cover types, we try to study on the possibility to use Satellite Data. development of Satellite Interpretation Skill and Digital Mapping Method. As analysis tools we use IMAGINE 8.3 and ArcView 3.0 software. The result showed that Hardwood took approximately 73%, 2,224ha of the total 3,058ha and Conifer takes 27%, 832ha.

  • PDF

Unsupervised Classification of Forest Vegetation in the Mt. Wolak Experimental Forest Using Landsat Thematic Mapper Data (Landsat Thematic Mapper 화상자료를 이용한 월악산 지역 산림식생의 무감독분류)

  • Lee, Sang Hee;Park, Jae Hyeon;Lee, Joon Woo;Kim, Je Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.36-44
    • /
    • 2001
  • The main purpose of this study was to classify forest vegetation effectively using Landsat Thematic Mapper data(June, 1994) in mountainous region. The research area was the Mt. Wolak Experimental Forest of Chungbuk National University, near Chungju and Jecheon city, Chungcheongbuk-do. To classify forest vegetation effectively, Normalized Difference Vegetation Index(NDVI) was used to reduce topographic effects. This NDVI was modified and transformed to the value of 0 to 255, and then the modified values were combined with other Landsat Thematic Mapper bands. To classify forest and land cover types, unsupervised classification method was used. The results of this study are summarized as follows. 1. Combinations of band "3, 5, NDVI" in Landsat Thematic Mapper data showed a good separation with high accuracy. The expected classification accuracy was 95.1% in Landsat Thematic Mapper data. 2. The Land Cover types were classified into six groups : coniferous forest, deciduous forest, mixed forest, paddy and grass, non-forest, and other undetectable areas. As these classified results were compared with the reconnaissance survey and aerial black and white infrared photographs, the overall classification accuracy was 76.5% in Landsat Thematic Mapper data. 3. The portion of non-forest in Mt. Wolak area was 1.9%. The percentages of coniferous, deciduous and mixed forests were 30.9%, 35.7% and 26.4%, respectively. 4. As these classified results were compared with other reference data, the percentages of coniferous, deciduous and mixed forests increased, but the portion of non-forest was exceedingly diminished. These differences are thought to be from the different research method and the different season of received Landsat Thematic Mapper data.

  • PDF