• Title/Summary/Keyword: Landsat 7 image

Search Result 121, Processing Time 0.023 seconds

A STUDY ON INTER-RELATIONSHIP OF VEGETATION INDICES USING IKONOS AND LANDSAT-7 ETM+ IMAGERY

  • Yun, Young-Bo;Lee, Sung-Hun;Cho, Seong-Ik;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.852-855
    • /
    • 2006
  • There is an increasing need to use data from different sensors in order to maximize the chances of obtaining a cloud-free image and to meet timely requirements for information. However, the use of data from multiple sensor systems is depending on comprehensive relationships between sensors of different types. Indeed, a study of inter-sensor relationships is well advanced in the effective use of remotely sensed data from multiple sensors. This paper was concerned with relationships between sensors of different types for vegetation indices (VI). The study was conducted using IKONOS and Landsat-7 ETM+ images. IKONOS and Landsat-7 ETM+ image of the same or about the same dates were acquired. The Landsat-7 ETM+ images were resampled in order to make them coincide with the pixel sizes of IKONOS. Inter-relationships of vegetation indices between images were performed using at-satellite reflectance obtained by converting image digital number (DN). All images were applied to topographic normalization method in order to reduce topographic effect in digital imagery. Also, Inter-sensor model equations between two sensors were developed and applied to other study region. In the result, the relational equations can be used to compute or interpret VI of one sensor using the VI of another sensor.

  • PDF

Method Development of Flood Damaged Area Detection by Typhoon RUSA using Landsat Images (Landsat 영상을 이용한 태풍 RUSA 침수피해지역 분석기법 연구)

  • Lee, Mi Seon;Park, Geun Ae;Park, Min Ji;Shin, Hyung Jin;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1300-1304
    • /
    • 2004
  • This study is to present a method of flood damaged area detection by the typhoon RUSA (August 31 - September 1, 2002) using Landsat 7 ETM+ and Landsat 5 TM images. Two images of Sept. 29, 2000 and Sept. 11, 2002 (path 115, row 34) were prepared for Gangreung, To identify the damaged areas, firstly, the NDVI (Normalized Difference Vegetation Index) of each image was computed, secondly, the NDVI values were reclassified as two categories that the negative index values including zero are the one and the positive index values are the other, thirdly the reclassified image before typhoon is subtracted from the reclassified image after typhoon to get DNDVI (Differential NDVI). Some part of urban and agricultural were classified into damaged area due to typhoon RUSA in Gangreung, $18.8km^2$ and $17.7km^2$ respectively.

  • PDF

Sea Surface Temperature Analysis for the Areas near Gwang-Yang Steel Mill using LANDSAT Thermal Data (Landsat 열적외선 위성자료를 이용한 광양제철소 주변 해역 해수표면온도 분석)

  • Kim, Sang-Min;Kim, Chang-Jae;Han, Soo-Hee;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2011
  • Characteristics of sea surface temperature(SST) difference around Gwang-Yang steel Mill where can affect marine ecosystem in Gwang-Yang bay using 25 collected Landsat-7 ETM+ thermal infrared band data from 2000 to 2010. To analyze accuracy of SST from the Landsat-7 ETM+ thermal infrared image, satellite-induced SST was verfied by compared Yeo-Su tide station and Landsat thermal image. As a result, SST from Landsat-7 ETM+ is $1.22^{\circ}C$ lower than sea temperature from Yeo-Su tide station and correlation coefficient resulted in above 0.991 which means that correlation coefficient between Landsat image temperature and field sea temperature is relatively high. Five regions were selected to analyze sea surface temperature between near Gwang-Yang steel mill and the open sea and analyzed timeseries of sea surface temperature seasonally and regionally. Moreover, the additional analysis has been carried out by comparing the averaged temperatures of Gwang-Yang and Soon-Cheon bays using the dataset over a year.

An Analysis of the Landuse Classification Accuracy Using IHS Merged Images from IRS-1C PAN Data and Landsat TM Data (IRS-1C PAN 데이터와 Landsat TM 데이터의 IHS중합화상을 이용한 토지이용분류 정확도 분석)

  • 안기원;이효성;서두천;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.187-194
    • /
    • 1998
  • In this study, effective multispectral Landsat TM band combinations for a merging with the high resolution IRS-1C PAN data using the IHS method to improve landuse accuracy is discussed. From the pre-classified image using the merged images with TM all six band images(with the exception of band 6 image) and PAN image, a sample data which has ten classes was generated. An evaluation of the overall classification accuracy for the representative seven merged images which were merged using each TM three-band images and IRS-1C PAN image by IHS method for the sample area. The increase in classification accuracy is most significant with the inclusion of two of TM4, TM5 and TM7 infrared band images. Especially, the largest increase(11.8 percent) in landuse classification accuracy were investigated when Landsat TM247 bands were merged with IRS-1C PAN data. The classification accuracy when TM three band image and PAN image were used without merging is higher than result of the case of using the merged images.

  • PDF

Generation of GCP Chip in Landsat-7 ETM+

  • Yoon, Geun-Won;Yun, Young-Bo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • In order to utilize remote sensed images widely, it is necessary to correct geometrically. Traditional approaches to geometric correction require substantial human operations. Such substantial human operations make geometric correction a laborious and tedious process. In this paper, We introduce concept of GCP(Ground Control Point) Chip and generate a GCP Chip for automatic geometric correction. GCP Chip is small image patch which has a GCP in reference coordinate image. GCP Chip will be used to match new images in geometric correction. We generated GCP chip using Landsat-7 ETM+ panchromatic band image in this study. Henceforth this result will support automatic process in geometric correction.

  • PDF

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.

Establishment of Geometric Correction Data using LANDSAT Satellite Images over the Korean Peninsular (한반도지역 LANDSAT 위성영상의 기하보정 데이터 구축)

  • Yoon, Geun-Won;Park, Jeong-Ho;Chae, Gee-Ju;Park, Jong-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.98-106
    • /
    • 2003
  • Because satellite images have the advantage of high resolution, multi-spectral, revisit and wide swath characteristics, it is increased to utilize satellite image and get information little by little in nowadays. In order to utilize remote sensed images effectively, it is necessary to process satellite images through many processing steps. Among them, geometric correction is essential step for satellite image processing. In this study, we constructed geometric correction data using LANDSAT satellite images. First, we extracted GCPs from maps and constructed database over the Korean peninsular. Second, LANDSAT satellite images, 165 scenes were corrected geometrically using GCP database. Finally, we made 7 mosaic images by means of geometric correction images over Korean peninsular. We think that constructed geometric correction data will be used for many application fields as basic data.

  • PDF

A Study on the EO-1 Hyperion's Optimized Band Selection Method for Land Cover/Land Use Map (토지피복지도 제작을 위한 초분광 영상 EO-1 Hyperion의 최적밴드 선택기법 연구)

  • Jang Se-Jin;Lee Ho-Nam;Kim Jin-Kwang;Chae Ok-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2006
  • The Land Cover/Land Use Map have been constructed from 1998, which has hierarchical structure according to land cover/land use system. Level 1 classification Map have done using Landsat satellite image over whole Korean peninsula. Level II classification Map have been digitized using IRS-1C, 1D, KOMPSAT and SPOT5 satellite images resolution-merged with low resolution color images. Level II Land Cover/Land Use Map construction by digitizing method, however, is consuming enormous expense for satellite image acquisition, image process and Land Cover/Land Use Map construction. In this paper, the possibility of constructing Level II Land Cover/Land Use Map using hyperspectral satellite image of EO-1 Hyperion, which is studied a lot recently, is studied. The comparison of classifications using Hyperion satellite image offering more spectral information and Landsat-7 ETM+ image is performed to evaluate the availability of Hyperion satellite image. Also, the algorithm of the optimal band selection is presented for effective application of hyperspectral satellite image.

Mapping Water Quality of Yongdam Reservoir Using Landsat ETM Imagery

  • Kim, Tae-Keun;Cho, Gi-Sung;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.141-146
    • /
    • 2002
  • Chlorophyll-a concentration maps of Yongdam reservoir in September and October, 2001 were produced using Landsat ETM imagery and the in-situ water quality measurement data. In-situ water samples were collected on 16th September and 18th October during the satellite overpass. The correlations between the DN values of the imagery and the values of chlorophyll-a concentration were analyzed. The visible bands(band 1, 2, 3) and the near infrared band(band 4) data of September image showed the correlation coefficient values higher than 0.9. The October image showed correlation coefficient values of about 0.7 due to the low variations of chlorophyll-a concentration. Regression models between the DN values of the Landsat ETM image and the chlorophyll-a concentration have been developed for each image. The developed regression models were then applied to each image, and finally the chlorophyll-a distribution maps of Yongdam reservoir were produced. The produced maps showed the spatial distribution of the chlorophyll-a in Yongdam reservoir in a synoptic way so that the tropic state could be easily monitored and analysed in the spatial domain.

Monitoring of the Changes of Tidal Land at Simpo Coast with Sea Surface inside Saemangeum Embankment Using Multi-temporal Satellite Image (다중시기 위성영상을 이용한 새만금 방조제 내측 해수면에 의한 심포항 연안의 간석지 지형 변화 탐지)

  • Lee, Hong-Ro;Lee, Jae-Bong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.13-22
    • /
    • 2005
  • This paper classifies the topography of the Saemangeum Tidal flats based on Landsat TM satellite images by unsupervised ISODATA method, and analysis of the spatiotemporal changes of the classified shapes. The sedimental topography represents various properties according to the Saemangeum Tidal Embankment progress. We well proceed this study of the sedimental changes and distributions. By specifying the topographic characteristics of inner sea areas respectively, the investigation on the case study area according to the changes of the tidal will be useful in the establishment of land reclamation plan and the land use of the reclaimed area. In addition, the estuary image can be divided into tidal flats and sea surfaces using the band 4, also the detailed topography using the band 5, respectively among Landsat TM 7 bands. This paper contributes to the efficient image processing of the spatiotemporal sedimental changes.

  • PDF