• Title/Summary/Keyword: Landing motion

Search Result 149, Processing Time 0.025 seconds

Three-dimensional Kinematic Analysis of the Yurchenko Layout with 360-degree Twist in Female Vaults: Deterministic Model and Judges' Scores

  • Park, Cheol-Hee;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Objective: The purpose of this study was to identify kinematic variables that govern successful performance and judges' scores and to establish correlative relationships among those of Yurchenko layout with a full twist in female vaults. Method: Four video cameras with sampling rate of 60 Hz collected 32 motion data of Yurchenko vaults from twenty-two female participants (age: $18.6{\pm}3.6years$, height: $153.0{\pm}6.5cm$, mass: $44.7{\pm}7.3kg$) during national competition. Posting processing and calculations of kinematic variables were performed in Kwon 3D XP and $Matlab^{(R)}$ programs. Correlation and regression analyses were applied to find the relationships between the obtained scores and kinematic variables. Deterministic model (Hay & Reid, 1988) was used to investigate the strength of correlative relationships among kinematic variables. Results: The obtained scores from the judges' decision were mainly affected by post-flight peak height, horse contact time, knee angle at landing, and horse takeoff angle. Strong blocking during horse contact was required to get successful performance and obtain high scores. Modified deterministic model showed that round-off entrance and takeoff angles and resultant velocity of the center of mass (CM) during the roundoff phase were the starting variables affecting performance in the following kinematics. Knee angle at landing, a highly influential variable on the obtained point, was only determined by judges' decision without significant correlative relationship with previous kinematic variables. Conclusion: The obtained scores highly depended on kinematic variables of post-flight and horse contact phases that were affected by those from the previous phases including round-off postures and resultant velocity of the body center of mass.

A Drift Control Performance of An Agricultural Unmanned Helicopter While Hovering (농용 무인 헬리콥터의 정지 비행시 편류제어 성능의 평가)

  • Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The precision aerial application of small farms, such as paddy, upland and orchard fields using agricultural unmanned helicopters became a new paradigm. The objective of this study was to evaluate the performance of a GPS module and algorithm, controlling drift of agricultural helicopter by the crosswind and maintaining the position for emergency landing. Purpose of the drift control, of which an algorithm works while hovering is related with the emergency sequence that coping with abnormal conditions of rotorcraft system. However, the inertial attitude control cannot detect a drifting motion of fuselage moving at the constant velocity, thus the crosswind takes the helicopter away from the landing position. Performance of the drift control module, based on the GPS that a hovering position did not deviate within 5m in diameter, were tested and evaluated. Initially, the reaction against a disturbing gust wind was sensitive, soon the helicopter maintained its locking position and azimuth within 5m in diameter. It was, however, difficult for the helicopter to recognize the swaying and nodding, the some deviation was expected due to the discrepancy characteristics of the GPS signal. The performance of the drift control proved the effectiveness of the module to maintain the position against an unintended drift during the emergency landing or hovering.

  • PDF

Successful Factor Analysis of 540° Dwihuryeochagi to Apply Free Style Poomsae of Taekwondo (태권도 자유 품새에 적용하기 위한 540° 뒤후려차기의 성공요인 분석)

  • Yoo, Si-Hyun;Ryu, Ji-Seon;Park, Sang-Kyoon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.285-294
    • /
    • 2013
  • The purpose of this study was to provide fundamental information for success factors of techniques through kinematic analysis including coordination of lower extremities and landing stability according to the success and failure of $540^{\circ}$ Dwihuryeochagi in Taekwondo. Twenty Taekwondo athletes: ten success group (S, age: $22.3{\pm}1.8$ yrs, height: $172.1{\pm}5.4$ cm, body mass: $64.4{\pm}4.2$ kg) and ten failure group (F, age: $22.3{\pm}1.8$ yrs, height: $172.1{\pm}5.4$ cm, body mass: $64.4{\pm}4.2$ kg) participated in this study. Three-dimensional motion analysis using a system of 3 video cameras with a sampling of 60 fields/s was performed during the competition of $540^{\circ}$ Dwihuryeochagi. Motions were divided into five events: pivot foot landing (E1), pivot foot toe off (E2), COM max height (E3), kick impact (E4) and landing (E5). At E1, the stride width was greater for S than for F (p<.05) while the time was greater for S than for F during P4 (p<.05). At E4, knee angle was greater for S than for F (p<.05). At E5, hip angle was greater for S than for F (p<.05) while kick distance was greater for S than for F (p<.05). Furthermore, at P3, the time would be related to kicking velocity (p<.05), while at P4, the time, range of hip angle and knee angle would be related to kick distance (p<.05). At P1, COM horizontal velocity would be related to COM vertical velocity of P1 and P2 (p<.05). Based on the findings, success factors of $540^{\circ}\acute{y}$ Dwihuryeochagi were COM horizontal velocity of P1, COM vertical velocity of P2, the time, kick distance, velocity, angle of lower extremities and coordination of P3-P4.

Kinematic Analysis of Women's Long Jump at IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 여자 멀리뛰기 경기의 운동학적 분석)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.603-610
    • /
    • 2011
  • The long jump motions of 8 finalists in the women's long jump at the IAAF World Championships, Daegu 2011 were analyzed, and the kinematic characteristics of their techniques were investigated. The kinematic characteristics of the long jump motion of the 8 finalists were as follows. In the run-up phase, the length of the 2 stride was $108{\pm}6.92%$ that of the 3 stride. The length of the 1 stride was $91{\pm}5.78%$ that of the 2 stride. The change in the height of the center of gravity was $0.07{\pm}0.03$ m. The maximum velocity during the run-up phase was $9.44{\pm}0.13$ m at the 1 stride. In the take-off phase, the horizontal velocity, vertical velocity, reduction in horizontal velocity were $7.80{\pm}0.15$ m/s, $2.96{\pm}0.14$ m/s, and $1.64{\pm}0.19$ m/s, respectively. The minimum knee angle and take-off angle were $151{\pm}8.89^{\circ}$ and $20.7{\pm}1.03^{\circ}$, respectively. In the flight phase, the flight time and maximum height of the center of gravity were $0.78{\pm}0.03$ s, and $1.60{\pm}0.05$ m, respectively. In the landing phase, the landing length was $0.50{\pm}0.07$ m. The trunk angle, knee angle, and hip angle were $74{\pm}18.75^{\circ}$, $131{\pm}10.45^{\circ}$, and $82{\pm}9.03^{\circ}$, respectively. The kinematic characteristics of the motion of a good long jump were as follows. The reduction in the horizontal velocity in the take-off phase was minimized, and the maximum velocity of the run-up was maintained. The vertical velocity in the take-off phase was increased using a rapidly extended knee and high center of gravity.

Flight Test Measurement and Assessment of a Flapping Micro Air Vehicle

  • Kim, Jong-Heon;Park, Chan-Yik;Jun, Seung-Moon;Chung, Dae-Keun;Kim, Jong-Rok;Hwang, Hee-Chul;Stanford, Bret;Beran, Philip;Parker, Gregory;Mrozinski, Denny
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.238-249
    • /
    • 2012
  • Flight test of flapping micro air vehicles (FMAVs) is carried out using an instrumented measurement system to obtain various engineering parameters and hence to assess the flight performance of the vehicles through the data investigation. An indoor flight test facility equipped with a motion capture system and tracking cameras is used for the work presented in this paper. Maneuvers including straight-level flight, ground flapping, takeoff and landing are tested. Spatial position and orientation data are obtained from the retro-reflective tracking markers attached to the vehicles. Subsequent test analysis is carried out by generating performance parameters from raw data and then assessing the flight performance by comparison of the vehicles. The main findings of this work confirm that the test method and procedures presented here enable the systematic numerical data measurement and assessment of the flying performances of these vehicles, and show the applicability for the test and evaluation of general flapping MAVs.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

The Kinematic Analysis of the Last Approach Stride and Take-off Phase of BKH Athlete in the High Jump (남자 높이뛰기 BKH 선수를 중심으로 한 도움닫기 마지막 1보와 발구름 국면의 운동학적 분석)

  • Yoon, Hee-Joong;Kim, Tae-Sam;Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.105-115
    • /
    • 2005
  • This study was investigated the kinematic factors of the last approach strides and. take off motion for the skill improving of BKH elite male athlete. 'The subjects chosen for the study were BKH and. KASZCZYK Emillian male athletes who were participated in 2003 Dae-Gu Universiad Games. Three high speed video cameras set in 60frames/s setting were used. for recording from the last approach strides to the apex position. After digitizing motion, the Direct Linear Transformation(DLT) technique was employed to obtain 3-D position coordinates, The kinematic factors of the distance, velocity and angle variable were calculated for Kwon3D 3.1. The following conclusions were drawn; 1. It showed longer stride length, as well as faster horizontal and lateral velocity than the success trial during the approach phase. For consistent of the approach rhythm, it appeared that the subject should a short length for obtain the breaking force by the lower COG during the approach phase. 2. The body lean angle showed a small angle by a high COG during the take-off phase. For obtain the vertical displacement of the COG and a enough space form the bar after take-off, it appeared that the subject should increase the body lean angle. 3. For obtain the vertical force during the takeoff phase, it appeared that the subject should keep straight as possible the knee joint. Therefor, the subject can be obtain a enough breaking force at the approach landing.

The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running (달리기 시 발의 인체측정학적 변인과 운동역학적 변인의 관계)

  • Lee, Young Seong;Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.173-183
    • /
    • 2019
  • Objective: The aim of this study was to investigate the correlation coefficients between anthropometric parameters of the foot and kinetic variables during running. Method: This study was conducted on 21 healthy young adults (age: $24.8{\pm}2.1yes$, height: $177.2{\pm}5.8cm$, body mass: $73.3{\pm}7.3kg$, foot length: $256.5{\pm}12.3mm$) with normal foot type and heel strike running. To measure the anthropometric parameters, radiographs were taken on the frontal and sagittal planes, and determined the length and width of each segment and the navicular height. Barefoot running was performed at a preferred velocity ($3.0{\pm}0.2m/s$) and a fixed velocity (4.0 m/s) on treadmill (Bertec, USA) in order to measure the kinetic variables. The vertical impact peak force, the vertical active peak force, the braking peak force, the propulsion peak force, the vertical force at mid-stance (vertical ground reaction when the foot is fully landed in mid-stance or at the point where the weight was uniformly distributed on the foot) and the impact loading rate were calculated. Pearson's correlation coefficient was used to investigate the relationship between anthropometric variables and kinetical variables. The significance level was set to ${\alpha}=.05$. Results: At the preferred velocity running, the runner with longer forefoot had lower active force (r=-.448, p=.041) than the runner with short forefoot. At the fixed velocity, as the navicular height increases, the vertical force at full landing moment increases (r= .671, p= .001) and as the rearfoot length increases, the impact loading rate decreases (r=- .469, p= .032). Conclusion: There was a statistically significant difference in the length of fore-foot and rearfoot, and navicular height. Therefore it was conclude that anthropometric properties need to be considered in the foot study. It was expected that the relationship between anthropometric parameters and kinetical variables of foot during running can be used as scientific criteria and data in various fields including performance, injury and equipment development.

A Study on the Effect of Pre-cue in Simple Reactions on Control-on-Display Interfaces

  • Lim, Ji-Hyoun;Choi, Jun-Young;Kim, Young-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.563-569
    • /
    • 2011
  • Objective: This study focuses on the effects of pre-cues informing the location of upcoming visual stimulus on finger movement response in the context of control-on-display interfaces. Background: Previous research on pre-cues focus on attention allocation and motion studies were limited to indirect control conditions. The design of this study aimed to collect data on the exact landing point for finger-tap responses to a given visual stimulus. Method: Controlled visual stimuli and tasks were presented on a UI evaluation system built using mobile web standards; response accuracy and response time were measured and collected as appropriate. Among the 16 recruited participants, 11 completed the experiment. Results: Providing pre-cue on the location of stimulus affected response time and response accuracy. The response bias, which is a distance from the center of stimulus to the finger-tap location, was larger when the pre-cue was given during a one-handed operation. Conclusion: Given a pre-cue, response time decreases, but with accuracy penalized. Application: In designing touch-screen UI's - more strictly, visual components also acting as controllers - designers would do well to balance human perceptual and cognitive characteristics strategically.

Design of a Mechanism for Reproducing Hovering Flight of Insects (곤충의 호버링 비행을 구현하는 메카니즘의 설계)

  • 정세용;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF