• Title/Summary/Keyword: Landform of river channel

Search Result 18, Processing Time 0.023 seconds

A Study on the Characteristics of Depositional Landform Change in the Geum River Channel Using Unmanned Aerial Vehicle: Focusing on Before and After the Opening Gate of Gongju Weir (무인항공기를 활용한 금강 하도내의 퇴적지형 변화 특성 연구: 공주보 개방 전·후를 중심으로)

  • Yoon, Hye-Yeon;Yun, Kwang-Sung;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • In this study is aerial photos and UAV(Unmanned Aerial Vehicle) images were used to analyzed the characteristics of depositional landform changes in the Geum river channels before and after the opening gate of Gongju weir. Based on the depositional landform classification result, the main stream and the bare land occupied most of the area in all periods, and also found that the main stream, mid-channel island, and sand bar occupied a greater degree of area increase or decrease compared to other landforms in the classification items. As a result of analyzing the characteristics of depositional landform changes before and after the opening gate of Gongju weir, it is judged that the depositional landforms have changed due to the decreased water level of the Geum river after the opening of the weir, the summer rainy season and typhoons, river stabilization after the effluence of Daecheong dam, supply and deposition of river sediments and fixation of vegetation. The results derived from this study can be used as basic data for the study of river depositional landforms and the establishment of management and conservation plans for the landforms in river channels.

Channel Evaluation for Abandoned Channel Restoration Using Image Analysis Technique (영상분석기법을 이용한 구하도 복원 대상하천의 하도평가)

  • Hong, Il;Kang, Joon-Gu;Kwon, Bo-Ae;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • River is able to change by various environmental factors. In order to conduct restoration design of abandoned river channels, it is necessary to evaluate the river through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study analyzes the changes in past and present river channels and examines the applicability of river channel evaluation through image analysis using aerial photographs and 1918 year's map. Aerial photograph analysis was conducted by applying the image analysis method and GIS analysis method on Cheongmicheon. As a result of this analysis, we have quantitatively identified the form and size of abandoned channels, changes in the vertical-section and cross-section length of rivers, and micro-landform changes. More importantly, we verified that morphological changes in sandbars due to artificial straightening are important data in identifying the state of current river channels. In these results, although image analysis technique has limitations in two-dimensional information from aerial photographs, we were able to evaluate the changes in river channel morphology after artificial maintenance of the river.

A Study on the Channel Planform Change Using Aerial Photographs and Topographic Map in the Mangyoung River (영상자료를 이용한 만경강 하도변화에 관한 연구)

  • Hong, Il;Kang, Joon-Gu;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.127-136
    • /
    • 2012
  • River is able to change by various environmental factors. In order to conduct river restoration design, it is necessary to evaluate the stable channel through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study was analyzed abandoned channel formation, changes in the vertical-section and cross-section length of rivers, and micro-landform changes etc using an image analysis technique. Purpose of this research is to evaluates the stable channel through a river channel morphology change from past and present river channels image. Mangyoung river was conducted artificial river maintenance through straight channel consolidation form 1920 to 1930 year. In the result river maintenance, mangyoung river length was decreased by 15 km and abandoned channels of six points were made. Since then, weir was continuously increased to control bed slope and use water. Install of weir was to be the reason of changes on channel width, thalweg, vegetated bar, sand bar, water area. Present Mangyoung river show that water area was temporary increased in upper and middle reach because of weir installation. Total sand bar was only decreased in upper channel. The change of vegetated bar and sand bar was slight recently. In this result, Mangyoung river is inferred to reach stabilized channel although there is some difference to the lower reach.

Landform Changes of Terminal Area of the Nagdong River Delta, Korea (낙동강 삼각주 말단의 지형 변화)

  • 오건환
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.67-78
    • /
    • 1999
  • In present, the terminal area of the Nagdong River Delta consists of micro-depositional landforms with sand barrier islands, sand bars and tidal flats which are arranged parallel to the present shoreline, and have rapidly shifted toward sea during last 100 years due to human activities such as construction of estuary dam, industrial complex and residential area. To clarify the landform changes of the area, the author traced the morphologic change pattern based on interpretation of air-photos, topographic maps and old Korean traditional map, and the results are as follows ; Based on the Daedongyeojido, one of the old Korean map, published in 1861, the area including upper part of the delta was underlying by sea level except two larger sand barriers, which means the Nagdong River Delta was not completely formed as the present outline of morphology by 1860s. According to the topographic map(1 :50,000) of 1916, the delta resembled to the present morphology pattern was exposed in 1916, and at this time the area was mainly composed of one sand barrier island, four sand bars and tidal flats, which had slowly elongated southwards before construction of the Nagdong River Estuary Dam in 1987. But after 1987, the area has been rapidly and drastically shifted southwards in arrange with one chain of sand barrier islands (Elsugdo -Myeonghodo-Sinhodo ) and four chains of sand bars (first chain ; Jinwoodo -Daemadeung-Maenggeummeorideung, second chain : Jangjado-Baeghabdeung, third chain ; Saedeung-Namusitdeung, fourth : Doyodeung-Dadaedeung) parallel to shoreline. This rapid landform change of the area is now occurring, and is seemed to ascribed firstly, to the construction of the Nagdong River Estuary Dam on Elsugdo in 1987, the Sinho Industrial Complex on Sinhodo and Myeongji Residential Area on Myeonghodo in 1992, secondly, to artificial alteration of drainage channel and consequential breakdown of former energy system between riverflow and tidal-and wave-energy. From these facts, it is inferred that the landform change pattern of the area will continue until a new equilibrium between the factor available to this energy system is accomplished.

  • PDF

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

Development and Operation of Region-Focused Program by Field Survey of Physical Geography with the Case Study on Miho River Basin, Central Korea (자연지리 답사를 통한 지역화 교육 프로그램의 개발과 운영 - 미호천 유역 하천지형을 사례로 -)

  • Lee, Min-Boo;Kim, Jeong-Hyuk;Choi, Hun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.53-67
    • /
    • 2014
  • This study aims to develop and operate education program for the region-focused field study on the physical geography for the students to understand their community places in the geography classes of elementary and, secondary schools and college. The theme of the program is understanding the geomorphic structures and processes including river channel, wetland, levee, terrace, sand and gravel bar and alluvial island, floodplain and irrigation system in Miho river basin, Chuncheong Province of Central Korea. For the study of regional geography as their community, the field education is focused on relations of landform to everyday life, though different levels in learning achievement according to each school classes. But, the purpose of the field education is, same at all classes, for student to analyze and understand the geomorphic effects on the place of everyday life in geography education.

The Changes of Depositional Landforms in the Downstream Reach of Cha-Cheon (차천(車川) 하류 구간의 퇴적지형 변화)

  • Yu, Tai-Il
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.3
    • /
    • pp.352-363
    • /
    • 2006
  • The purpose of this paper is to analyze changes in the depositional landform in the channel of Cha-cheon, a branch stream of Nakdong river(main stream) since the artificial straight channel has been constructed in 1973. The results of analyses are as follow. First, the Cha-cheon has flooded over one time in a year, and flowed backward over three times annually, according to analyze the data of the Hyeonpoong Gauging Station of rainfall and water level during a decade(1993$\sim$2002). Second, the flood plain within the artificial straightened channel has a nearly plain profile between the small dike and last riffle(point A). Deposits thickness of flood plain reduce gradually toward upstream. Third, grain size distribution of the flood plain deposits(0$\sim$20cm) within the artificial straightened channel has a coarsening trend in downstream reach of C point. It implies that the backward flow of Nakdong river(the main stream of Cha-cheon) make effect on the depositional mechanism of lowest reach in Cha-cheon. Finally, the result of analyzing grain size distribution of the flood plain deposits(0$\sim$20cm) within the artificial straightened channel implies that the c-point is the boundary between the vertical deposition of suspended load due to the backward flow of Nakdong river and the deposition of bed load supplied from hillslope of Cha-cheon basin.

  • PDF

Updating DEM for Improving Geomorphic Details (미기복 지형 표현을 위한 DEM 개선)

  • Kim, Nam-Shin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.64-72
    • /
    • 2009
  • The method to generate a digital elevation model(DEM) from contour lines causes a problem in which the low relief landform cannot be clearly presented due to the fact that it is significantly influenced by the expression of micro landform elements according to the interval of contours. Thus, this study attempts to develop a landcover burning method that recovers the micro relief landform of the DEM, which applies buffering and map algebra methods by inputting the elevation information to the landcover. In the recovering process of the micro landform, the DEM was recovered using the buffering method and elevation information through the map algebra for the landcover element for the micro landform among the primary DEM generation, making landcover map, and landcover elements. The recovering of the micro landform was applied based on stream landforms. The recovering of landforms using the buffering method was performed for the bar, which is a polygonal element, and wetland according to the properties of concave/convex through generating contours with a uniform interval in which the elevation information applied to the recovered landform. In the case of the linear elements, such as bank, road, waterway, and tributary, the landform can be recovered by using the elevation information through applying a map algebra function. Because the polygonal elements, such as stream channel, river terrace, and artificial objects (farmlands) are determined as a flat property, these are recovered by inputting constant elevation values. The results of this study were compared and analyzed for the degree of landform expression between the original DEM and the recovered DEM. In the results of the analysis, the DEM produced by using the conventional method showed few expressions in micro landform elements. The method developed in this study well described wetland, bar, landform around rivers, farmland, bank, river terrace, and artificial objects. It can be expected that the results of this study contribute to the classification and analysis of micro landforms, plain and the ecology and environment study that requires the recovering of micro landforms around streams and rivers.

  • PDF

Mechanism of Wetland Formation according to Interaction of River Bed Fluctuation and Plant Success in the Hangang River Estuary (한강하구에서 하도변화와 식물천이의 상호작용에 따른 습지형성 기작)

  • Lee, Samhee;Youn, Sukzun
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.320-330
    • /
    • 2022
  • The Hangang river estuary, which is a natural estuary without structures such as estuary barrage, is an ecological pathway connecting the sea and rivers. Accordingly, Hangang river estuary has various species, and there is very valuable. Sediment classification in Hangang river estuary is three-dimensionally and diversely is distributed. Sediment classification in Hangang river estuary is also sensitively changed according to various factors such as climate change and river development. It is typically cause to landform and to develop a compound cross section. In Janghang wetland, the plant success is remarkable according to the morphological change at river bed. The purpose of this study is to identify the mechanism of wetland formation based on the observation on-site. As a result of the observation, Janghang wetland where was artificially created, has been grown according to the river bed change based on the flow rate and the plant success. The viscous surface layer material(fine grains of wash rod properties), which is not the main material(sand) of the river bed, but sub-materials of river bed, jas been settled on the pioneer plants(bolboschoenus planiculmis, etc.). It is an important role in the growth of a compound cross section and a wetland. After the wetland developed to the compound cross section, it is observed that the pioneer plants are transferred to other plant species.

A study on historical changes of landforms and habitat structures in the mid-stream of the Mangyeong River by weirs (보 설치로 인한 만경강 중류의 하천지형과 서식처 구조 변화에 관한 연구)

  • Choi, Mikyoung;Kim, Ji-sung;Ock, Giyoung;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.791-799
    • /
    • 2019
  • This study explained the historical changes in the habitat structures based on the aerial photographs (1948, 1967, 1973, 1989 and 2010) of the mid-stream reach of the Mangyeong River. The habitat structure was divided into landforms and aquatic habitats. The landform was classified into bare land, vegetated land, water surface, farmland and artificial land. The aquatic habitat was classified into natural riffle, artificial riffle, run, head wando, tail wando, mid wando, pond and chute channel. The ratio of bareland decreased, and water surface and vegetated land increased after the excavation in 1970s and since the construction of weir in 1980s. As historical changes of aquatic habitat, ratio of run decreased sharply while mid wando increased sharply. aquatic habitats such as head wando, tail wando, and pond located on bars decreased dramatically.