• Title/Summary/Keyword: Landfill gases

Search Result 41, Processing Time 0.021 seconds

A Study on Variation of Landfill Gases in Completed Refuse Landfill Site after the Stabilization (사용종료 매립지의 지반안정화 후 매립가스의 변화)

  • Lee, Min-Hee;Ju, So-Young;Park, Jun-Kyu;Yeon, Ik-Jun;Kim, Kwang-Yul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • The reclaimed waste layer in a completed refuse small landfill site was stabilized by JSP(Jumbo Special Pattern System) method. There were some variations of landfill gases(LFGs) after the stabilization. This study investigated the landfill gases emitted from a open dumping landfill site. We measured concentration of landfill gases before and after the construction, and 28 months later. As a result, the concentrations of $H_2S$ and $NH_3$ gases before the construction were 123.51ppm and 171.54ppm, respectively. These values were higher than TWA(Time Weighted Average) values. But the concentrations of $H_2S$ and $NH_3$ gases after the construction were 55.59ppm and 20.51ppm, and they also decreased 9.04ppm and 11.82ppm in 28 months. $CH_4$ and other landfill gases after the construction were little or a little detected in the landfill site. Hence we found out that concentrations or classes of landfill gases causing some problems extremely decreased by way of the stabilization.

  • PDF

A Study on Landfill Gases in Old Open Dumping Landfill Site (단순 매립지내의 매립가스에 관한 연구)

  • Yeon, Ik-Jun;Ju, So-Young;Yoon, Chol;Yi, Myoung-Sun;Kim, Kwang-Yul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • The purposes of this study are the analysis of landfill gases(LFGs) in old open dumping landfill site near middle city and offer the useful data for reusing the landfill site as the residental, commercial and other purposes. The concentration of $CO_2$ and $CH_4$ were lower as 8.28 vol% and 1,247 ppm but the concentrations of $NH_3$ and $H_2S$ were 7 times and 12 times higher than TLV-TWA standard. The concentration of $CH_4$ and other gases were lower than the ACGIH criterion. As the result of the environmental assessment on the open dumping landfill, if appears that this landfill is maturation phase and the formation of LFGs is reduced. If the treatment facility of $NH_3$ and $H_2S$ gases is prepared, it can be safely used as this landfill site.

  • PDF

The Study on Methane Gas Generation Rate from Chon-An Beck-Suk Landfill Site (천안백석매립장을 중심으로 한 메탄가스 발생량에 관한 연구)

  • Jeong, Jin Do;Kim, Jang U;Jeong, In Gwon;Bae, Chan Yeol
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.697-701
    • /
    • 2004
  • Most of methane gas result from waste matter in landfill, therefore the persons concerned take an increasing interest in management of gases in landfill. Infrared Gas Analyzer was used to measure components of gases, $CH_4,$ $CO_2,$ $O_2,$ through gas exhausted pipe. To measure amount of the gas flow meter(Portable Hot-Line Current Meter) was used and it was set at right angles with direction of the flow. In this research the total amount of methane gas produced in Beck-Suk Landfill was calculated through FOD method suggested by IPCC. This research found that in Chon-An Beck-Suk Landfill anaerobic resolution was made actively and the amount of methane gas produced there was 54.14%, which is higher than common figure, 50%, in other researches. The components of reclaimed waste matter, especially, organic waste matter can have a great effect of the amount of the greenhouse gases produced in landfill. We can expect that the amount of greenhouse gas will decrease from 2005, when it will be prohibited from carrying kitchen refuse and sludge into landfill.

Biofiltration of Odorous Compounds in Municipal Solid Waste Landfill Gases (생물탈취상에 의한 도시폐기물 매립지가스내 악취물질의 처리)

  • 남궁완;박준석;황의영;이노섭;인병훈;김정대
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.85-96
    • /
    • 1999
  • Biofiltration is an attractive technique for elimination of VOCs and odorous compounds from low-concentration, high-volume waste gas streams because of its simplicity and cost-effectiveness. The objective of this study was to estimate the removal characteristics of Odorous Compounds including $H_2$S, $NH_3$End BTEX in MSW landfill gases. This Study was conducted at Nanjido landfill site. A compost from the Nanjido composting facility was used as a filling material for biofiltration. Extracted landfill gases were injected into biofilter reactors after mixing with air. Experiments were performed in an incubator being set to $20^{\circ}C$ $H_2$S concentrations were monitored at the depths of 25, 50, 75 and 100cm from the bottom Of the biofilter reactors. 98% of $H_2$S was removed at the filling depth of only 25cm. NH$_3$removal rate was about 85%. Toluene removal rate was the highest among BTEX. Significant pH drop of a filling material was not observed during the biofilter operation of 1 month. Without mixing the landfill gas stream with all, the removal rate of $H_2$S decreased down to 30%.

  • PDF

Comparison of effectiveness of Aeration Modes on the Removal of Landfill Gases for Landfill Mining (폐기물매립지 굴착사업을 위한 가스치환시 공기공급방법의 효율성 비교)

  • 남궁완;박준석;김정대
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 1998
  • The purpose of this study was to estimate the removal potential of landfill gases during landfill mining project. Air injection mode and landfill gas extraction mode were tested. A mode that air injected at one injection well and landfill gas extracted at another extraction well at the same time was also tested to compare. The flow rates of all modes were the same as 15$\textrm{km}^2$/min. Air injection mode was the most effective in removing $CH_4$. Air injection/extraction mode didn't improve the effectiveness of removing CH$_4$compared with air injection mode. Air injection mode were more advantageous than air injection/extraction mode in respect to energy consumption because that of air injection/extraction mode were doubled.

  • PDF

A Study on Numerical Calculation of Gas Migration from the Sanitary Landfill (쓰레기 매립지에서 가스유출 계산에 관한 연구)

  • 이해승
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.43-51
    • /
    • 1998
  • This study presents a numerical method for calculating gas flow around a sanitary landfill gas vent, when gas flows by pressure. The method described is a three-dimensional compartmental model and includes methods to determine the dimensions for the model. Using the numerical method, controll of press and gases flowing out to the air through final cover soil, and degine of sanitary landfill gas vents.

  • PDF

A Study on the Atmospheric Dry Deposition Flux and Soil Contamination in a Completed Landfill - A case study on Nanji landfill - (사후관리단계에 있는 매립지의 건식침적량 및 토양오염에 관한 연구 -난지도 매립지 사례를 중심으로-)

  • Yi, Seung Muk;Cho, Kyung Suk;Lee, Eun Young;Kim, Yoon Jung;Park, Jae Woo;Park, Seok Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.31-44
    • /
    • 1999
  • Atmospheric dry deposition flux and ambient particle mass size distribution were measured to evaluate the impact of atmospheric deposition around the Nanjido landfill sites. Wind direction affects greatly on the variation of mass flux and mass size distribution and made two times higher when the wind was blown from the road side. The effect of Nanjido landfill on the mass size distribution was significant comparing to simultaneously measured mass size distribution at the other sampling site. The results showed that the particle diameter bigger than $10{\mu}m$ explained the majority of atmospheric dry deposition flux. A survey was also carried out to investigate the contamination of soils in a completed Nanjido landfill. The chemical properties of the soil analyzed in the present study include pH, oxidation-reduction potential (ORP), anion and cation concentration, total organic carbon(TOC), and some-metal elements concentrations were analyzed. Microbial activity in the soils was also evaluated by measuring dehydrogenase activities. TOC in the soil contaminated with leachate was $467.0{\mu}g/g-dry$ soil, and the TOC in the soil, where Nanjido landfill gases were emitted from, was $675{\mu}g/g-dry$ soil. The highest microbial activity of $968.0{\sim}2147{\mu}g-TPF/g-dry$ soil day was found in the soil spouting Nanjido landfill gases. Compared with those in the uncontaminated soil, the concentrations of Cr, Cu and Ph in the contaminated soil were higher.

  • PDF

Development of Stability Index for Defining the End of the Post-closure Monitoring Period for MSW Landfill (폐기물매립지의 사후관리종료 평가를 위한 안정화 지수 산정에 관한 연구)

  • Lee, Nam-Hoon;Han, Jeong-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • The purpose of this study was to develop the stability index of landfill sites to assess it's degree of stability. In order to develop the stability index, field data including leachate qualities, Landfill gas (LFG) composition and element composition of wastes from 50 closed landfills were collected. Three parameters-BOD/CODcr among leachate quality parameters, $CH_4$ among landfill gases, and C/N ratio from wastes-were found to be the best parameters for measuring the stability of landfill sites. The trend line of these parameters were used to Also, $CH_4$ from landfill gases and C/N ratio from wastes were found to be the best parameters. The trend lines of these parameters were used to develop the stability index of landfill sites. The equation for the index was as following; $I_{LS}=S_L+S_G+S_W$ $S_L=-\{4.892+16.587{\cdot}ln[BOD/COD_{Cr]\}$ $S_G=53.872-12.782{\cdot}ln[CH_4]$ $S_W=79.382-20.013{\cdot}ln[C/N]$ (The maximum score for $S_L$, $S_G$, and $S_W$ was 33.3.) where, $I_{LS}$ : The stability index of the landfill $S_L$ : The stability score of the leachate $S_G$ : The stability score of the landfill gas $S_W$ : The stability score of the waste.

  • PDF

A comparative study on efficiency in the sulfate -added anaerobic landfill site and the semi-aerobic landfill site for the inhibition of methane genration from a landfill site (매립지의 메탄 발생억제를 위한 황산염 첨가형매립지 및 준호기성 매립지의 효율 비교에 대한 연구)

  • 김정권;김부길
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.325-330
    • /
    • 1999
  • This study aims to observe the inhibition of methane generation, the decomposition of organic matter, and the trend of outflowing leachate, using the simulated column of the anaerobic sanitary landfill structure of sulfate addition type which is made by adding sulfate to a current anaerobic landfill structure, and the simulated column of semi-aerobic landfill structure in the laboratory which is used in the country like Japan in order to inhibit methane from a landfill site among the gases caused by a global warming these days, and at the same time to promote the decomposition of organic matter, the index of stabilization of landfill site. As a result of this study, it is thought that the ORP(Oxidation Reduction Potential) of the column of semi-aerobic landfill structure gradually represents a weak aerobic condition as time goes by, and that the inside of landfill site is likely to by in progress into anaerobic condition, unless air effectively comes into a semi-aerobic landfill structure in reality as time goes by. In addition, it can be seen that the decomposition of organic matter is promoted according to sulfate reduction in case of $R_1$, a sulfate-added anaerobic sanitary landfill structure, and that the stable decomposition of organic matter in $R_1$ makes a faster progess than $R_2$. Moreover it can be estimated that $R_1$, a sulfate-added anaerobic sanitary landfill structure has an inhibition efficiency of 55% or so, compared with $R_2$, a semi-aerobic landfill structure, in the efficiency of inhibiting methane.

  • PDF

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF