• Title/Summary/Keyword: Landfill disposal facility

Search Result 19, Processing Time 0.024 seconds

Preliminary Radiation Exposure Dose Evaluation for Workers of the Landfill Disposal Facility Considering the Radiological Characteristics of Very Low Level Concrete and Metal Decommissioning Wastes (극저준위 콘크리트, 금속 해체방폐물의 방사선적 특성을 고려한 매립형 처분시설 방사선작업자 예비 피폭선량 평가)

  • Ho-Seog Dho;Ye-Seul Cho;Hyun-Goo Kang;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.509-518
    • /
    • 2023
  • The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.

Study of the MSW landfill Facility of Installation and Consideration (폐기물 매립시설 설치방법 및 고려사항에 대한 고찰)

  • Kim, Sang-Keun;Kwon, Ki-Bum;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.259-266
    • /
    • 2008
  • In the past, MSW (Municipal Solid Waste) disposal was typically done by recycling, incineration, or landfilling. In South Korea prior to the late 1950's, land burial was usually accomplished by disposal in an open dump. Currently, with increasing concerns and environmental recognition, MSW disposal and landfilling is more restricted. MSW landfill facilities have been developed with certain design and construction specifications. However, these methods have a space for improvement. MSW landfill facilities follow a step wise approach of design, construction, operation and closure management after use in agreement with established environmental and sanitary standards. This study intends to give a technical guidance for installation and consideration of newly established MSW landfill facilities, and also provide an establishment and regular inspection of MSW landfill facilities.

  • PDF

Parametric Study for Structural Reinforcement Methods of Disposal Container for NPP Decommissioning Radioactive Waste

  • Hyungoo Kang;Hoseog Dho;Jongmin Lim;Yeseul Cho;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.329-345
    • /
    • 2023
  • This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.

Review of Waste Acceptance Criteria in USA for Establishing Very Low Level Radioactive Waste Acceptance Criteria in the 3rd Step Landfill Disposal Site (국내 극저준위방폐물 처분시설 인수기준 마련을 위한 미국 처분시설의 인수기준 분석)

  • Park, Kihyun;Chung, Sewon;Lee, Unjang;Lee, Kyungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2020
  • According to the Korea Radioactive Waste Agency's (KORAD's) medium and low level radioactive waste management implementation plan, the Domestic 3rd Step Landfill Disposal Facility has planned to accept a total of 104,000 drums (2 trenches) of very low level radioactive waste (VLLW), from the decommissioning site from April 2019 - February 2026 (total budget: 224.6 billion Won). Subsequently, 260,000 drums (5 trenches) will be disposed in a 34,076 ㎡. Accordingly, KORAD is preparing a waste acceptance criteria (WAC) for this facility. Every disposal facility for VLLW in other countries such as France and Spain, operate their WAC for each VLLW facility with a reasonable application approach, This, paper focuses on analyzing the WAC conditions in VLLW sites in the USA and discusses whether these can be met in domestic VLLW WAC. It also helps in the preparation of WAC for the 3rd Step Landfill Disposal Site in Gyeongju, since the USA has prior experience on decommissioning nuclear waste.

A Case Study for Site Selection of the Waste Treatment Facilities (폐기물처리시설 입지선정에 따른 사례연구)

  • 이해승
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.24-36
    • /
    • 2004
  • This study is to investigate the present condition of waste disposal establishment and to analysis problems which could be produced at location selection formalities of waste disposal establishment. It proposed building methods of waste disposal establishment to lead spontaneous participation of local resident according to case analysis of waste disposal establishment. There are research results; i) Opposition of inhabitants was the majority of reason at the business abandonment or delay of waste disposal establishment. Therefore agreement formation course with local inhabitants is most important position. ii) Many estimate have been needed for waste disposal establishment, but support estimate of government was 30-50% that is really low compare with other environmental establishment. So that it need to increase of government estimate. iii) Location collection is carried out based on law and final collected location must be executed without delay of relation business as soon as possible. iv) Standard of location collection has to divide into small, middle and large size and to apply with same rule according to divided location. v) It must be change public subscription before and location selection after and maintain continuance of information offer to local inhabitants and offered information. vi) after building of waste disposal establishment for solving distrust of waste disposal establishment. It must be planed and carried on useful support countermeasure to local inhabitants in actuality.

Environmental Impact Assessment for the Waste Landfill Site in the Republic of Korea (한국에서의 매립지에 대한 환경영향평가)

  • Lee, Mu-Choon
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 1995
  • Most of the solid waste has been land-filed as an ultimate disposal method in Korea, with might induce many environmental problems by generating odor, particulates and leachate. The landfill site should be considered as a kind of pleasant facility to neighboring residents. Currently, for a landfill site, while the environmental law requires to perform the EIA before the planning. EIA has been performed after the selection of the landfill-site. That might be controversal to the purpose of doing EIA. In this study, the weakness of the EIA for the landfill-site was analysed and was suggested for comprehensive EIA in Korea as well.

  • PDF

A Conceptual Design on Performance Test Facility of Disposal Cover for the Near Surface Disposal of Low and Intermediate Level Radioactive Waste (중.저준위 방사성폐기물 천층처분을 위한 처분덮개의 성능실증 시험시설 개념설계)

  • 이찬구;박세문;김창락;염유선;이은용
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.245-254
    • /
    • 2001
  • The experimental study on disposal cover through the performance test facility offers reliability in the safety of near surface disposal of low and intermediate level radioactive waste. To ensure the long-term safety of the repository, the impermeability, integrity, resistance to degradation and ease of maintenance might be considered as the basic performance requirement of the disposal cover. considering the difficulties to meet these performance requirement by using single layer, the disposal cover design which is composed of top layer, middle drainage layer and bottom low permeability layer is schemed for the test facility. The water balance of the cover was evaluated by using HELP code. For the long-term monitoring of the soil moisture content and matric potential, TDR probes and tensiometers will be installed in 6 test cells. Each test cell is dimensioned 3$\times$3$\times$3.3m.

  • PDF

Residual Radioactivity Investigation & Radiological Assessment for Self-disposal of Concrete Waste in Nuclear Fuel Processing Facility (콘크리트 폐기물의 자체처분을 위한 잔류방사능 조사 및 피폭선량평가)

  • Seol, Jeung-Gun;Ryu, Jae-Bong;Cho, Suk-Ju;Yoo, Sung-Hyun;Song, Jung-Ho;Baek, Hoon;Kim, Seong-Hwan;Shin, Jin-Seong;Park, Hyun-Kyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.91-101
    • /
    • 2007
  • In this study, domestic regulatory requirement was investigated for self-disposal of concrete waste from nuclear fuel processing facility. And after self-disposal as landfill or recycling/reuse, the exposure dose was evaluated by RESRAD Ver. 6.3 and RESRAD BUILD Ver.3.3 computing code for radiological assessments of the general public. Derived clearance level by the result of assessments for the exposure dose of the general public is 0.1071Bq/g (3.5% enriched uranium) for landfill and $0.05515Bq/cm^2$ (5% enriched uranium) for recycling/reuse respectively. Also, residual radioactivity of concrete waste after decontamination was investigated in this study. The result of surface activity is $0.01Bq/cm^2\;for\;{\alpha}-emitter$ and the result of radionuclide analysis for taken concrete samples from surface of concrete waste is 0.0297Bq/g for concentration of $^{238}U$, below 2w/o for enrichment of $^{235}U$ and 0.0089Bq/g for artificial contamination of $^{238}U$ respectively. Therefore, radiological hazard of concrete waste by self-disposal as landfill and recycling/reuse is below clearance level to comply with clearance criterion provided for Notice No.2001-30 of the MOST and Korea Atomic Energy Act.

  • PDF

A Study on Environmental Impact Assessment Guidelines for Marine Environmentsin Construction Projects of Offshore Waste Disposal Landfills (해상최종처리장 건설사업의 해양환경 환경영향평가 가이드라인 개발 연구)

  • Lee, Haemi;Son, Minho;Kang, Taesoon;Maeng, Junho
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.312-331
    • /
    • 2019
  • An offshore waste disposal facility refers to a landfill site for final landfilling of stabilized inorganic solid waste such as land and marine waste incineration materials, and the aim of such a facility is to solve the problem of insufficient waste disposal space on land and create and develop environmentally friendly marine spaces. The purpose of this study is to prepare guidelines for the construction of offshore waste disposal facilities, which reflect the need and importance of paying sufficient heed to environmental considerations from the initial stage of the project, in order to investigate, predict, and assess how such guidelines will affect the marine environment in relation to the construction of offshore waste disposal facilities, with the goal of minimizing the impact on and damage to the environment. For the purpose of this research, guidelines focusing on the construction of offshore waste disposal facilities were derived through an analysis of domestic cases and similar foreign cases and an assessment of their level of compliance with existing EIA guidelines through the operation of a discussion forum. In order to review the EIA report on similar cases in Korea, 17 EIA documents (2005~2016) for dredged soil dumping areas and ash ponds of thermal power plants were analyzed to investigate the status of marine organisms, marine physics, marine water quality, and marine sediment and to understand what types of problems can occur and what improvement measures can be taken. The purpose of these guidelines were to minimize damage to the marine environment by promoting EIA protocols in accordance with scientific and systematic procedures, to reduce the consultation period related to projects, to resolve social conflicts, and to reduce economic costs.

Calculation and Analysis of Actual Recycling Rate and Final Disposal Rate of Industrial Waste by Material Flow Analysis (물질흐름분석을 통한 사업장폐기물의 실제적인 재활용률과 최종처분율의 산정 및 분석)

  • Oh, Gil-Jong;Cho, Yoon-A;Kim, Ji-Yeon;Kim, Ki-Heon
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.785-798
    • /
    • 2018
  • Since the Framework Act on Resource Circulation was enacted in 2018, the government should establish a National Resource Circulation Master Plan every 10 years, which defines mid- to long-term policy goals and directions on the efficient use of resources, prevention of waste generation and recycling of waste. In addition, we must set mid- to long-term and stepwise targets for the final disposal rate, recycling rate (based on sorted recyclable materials and recycled products), and energy recovery rate of wastes, and relevant measures should be taken to achieve these targets. However, the current industrial waste (IW) statistics have limitations in setting these targets because the final disposal rate and recycling rate are calculated as the ratio of the recycling facility input to the IW generation. In this study, the material flow from the collection stage to the final disposal of industrial waste was analyzed based on the generation of 2016, and the actual recycling amount, actual incineration amount, final disposal amount and their rates were calculated. The effect on the recycling, incineration and final disposal rates was examined by changing the treatment method of nonhazardous wastes from the factory and construction and demolition wastes, which were put in landfills in 2016. In addition, the variation of the waste treatment charge was investigated according to the change of treatment methods. The results of this study are expected to be effectively used to establish the National Resource Circulation Master Plan and industrial waste management policy in the future in South Korea.