• Title/Summary/Keyword: Land-use Factors

Search Result 650, Processing Time 0.031 seconds

A Study on the Optimal Operation and Policy of the Boryeong Dam Diverion Pipe Line Using the SWAT Model (SWAT 모형을 이용한 보령댐 도수로 운영 방안 및 정책 연구)

  • Park, Bumsoo;Yoon, Hyo Jik;Hong, Yong Seok;Kim, Sung Pyo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.546-558
    • /
    • 2020
  • While industrialization has provided in abundance, the pollution it creates has caused untold damage to the environment, increasing the frequency and severity of natural disasters through changes in global climate patterns. The World Risk Forum's (WEF) World Risk Report presented the results of a survey of experts from around the world detailing the most influential risk factors over the next decade. Notably, the failure to respond to climate change ranked first and the global water crisis third. The extreme drought in the western Chungnam province was unexpected in 2016. At the time, the water level of Boryeong Dam was drastically decreased due to receiving less than half the average recorded rainfall in the region that year. The Boryeong Dam diversion pipeline has the capacity to solve the water shortage problem between these two regions by providing water from Geumgang to the western part of Chungnam, including Boryeong City. Current weather trends suggest drought is likely to continue in western Chungnam, which uses the Boryeong Dam as an intake source. This makes it necessary to operate Boryeong Dam diversion pipeline in an efficient and effective manner. SWAT is a watershed scale model developed to predict the impact of land management practices on water. The SWAT model was used in this study to evaluate the adequacy of the Boryeong Dam diversion pipeline operational plan by comparing it to present Boryeong Dam diversion pipeline operation. By investigating the number of days required to reach each reservoir stage, we determined that the number of days required to reach the boundary stage was less than that of the current operation. This determination accounts for the caveats that the Boryeong Dam waterway was not operated and only one pump will be operated from October to May of next year. As our results suggest, the most stable operation scenario is to operate two pumps at all times. This can be accomplished by operating two pumps from the caution stage to increase the number of pumps whenever the stage is raised. In addition to the stable operation of the Boryeong Dam pipeline, policy considerations are required with regard to imposing a water use charge on users of the Boryeong Dam region.

History of Disease Control of Korean Ginseng over the Past 50 Years (과거 50년간 고려인삼 병 방제 변천사)

  • Dae-Hui Cho
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.51-79
    • /
    • 2024
  • In the 1970s and 1980s, during the nascent phase of ginseng disease research, efforts concentrated on isolating and identifying pathogens. Subsequently, their physiological ecology and pathogenesis characteristics were scrutinized. This led to the establishment of a comprehensive control approach for safeguarding major aerial part diseases like Alternaria blight, anthracnose, and Phytophthora blight, along with underground part diseases such as Rhizoctonia seedling damping-off, Pythium seedling damping-off, and Sclerotinia white rot. In the 1980s, the sunshade was changed from traditional rice straw to polyethylene (PE) net. From 1987 to 1989, focused research aimed at enhancing disease control methods. Notably, the introduction of a four-layer woven P.E. light-shading net minimized rainwater leakage, curbing Alternaria blight occurrence. Since 1990, identification of the bacterial soft stem rot pathogen facilitated the establishment of a flower stem removal method to mitigate outbreaks. Concurrently, efforts were directed towards identifying root rot pathogens causing continuous crop failure, employing soil fumigation and filling methods for sustainable crop land use. In 2000, adapting to rapid climate changes became imperative, prompting modifications and supplements to control methods. New approaches were devised, including a crop protection agent method for Alternaria stem blight triggered by excessive rainfall during sprouting and a control method for gray mold disease. A comprehensive plan to enhance control methods for Rhizoctonia seedling damping-off and Rhizoctonia damping-off was also devised. Over the past 50 years, the initial emphasis was on understanding the causes and control of ginseng diseases, followed by refining established control methods. Drawing on these findings, future ginseng cultivation and disease control methods should be innovatively developed to proactively address evolving factors such as climate fluctuations, diminishing cultivation areas, escalating labor costs, and heightened consumer safety awareness.

Studies on Development of Prediction Model of Landslide Hazard and Its Utilization (산지사면(山地斜面)의 붕괴위험도(崩壞危險度) 예측(豫測)모델의 개발(開發) 및 실용화(實用化) 방안(方案))

  • Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.175-190
    • /
    • 1994
  • In order to get fundamental information for prediction of landslide hazard, both forest and site factors affecting slope stability were investigated in many areas of active landslides. Twelve descriptors were identified and quantified to develop the prediction model by multivariate statistical analysis. The main results obtained could be summarized as follows : The main factors influencing a large scale of landslide were shown in order of precipitation, age group of forest trees, altitude, soil texture, slope gradient, position of slope, vegetation, stream order, vertical slope, bed rock, soil depth and aspect. According to partial correlation coefficient, it was shown in order of age group of forest trees, precipitation, soil texture, bed rock, slope gradient, position of slope, altitude, vertical slope, stream order, vegetation, soil depth and aspect. The main factors influencing a landslide occurrence were shown in order of age group of forest trees, altitude, soil texture, slope gradient, precipitation, vertical slope, stream order, bed rock and soil depth. Two prediction models were developed by magnitude and frequency of landslide. Particularly, a prediction method by magnitude of landslide was changed the score for the convenience of use. If the total store of the various factors mark over 9.1636, it is evaluated as a very dangerous area. The mean score of landslide and non-landslide group was 0.1977 and -0.1977, and variance was 0.1100 and 0.1250, respectively. The boundary value between the two groups related to slope stability was -0.02, and its predicted rate of discrimination was 73%. In the score range of the degree of landslide hazard based on the boundary value of discrimination, class A was 0.3132 over, class B was 0.3132 to -0.1050, class C was -0.1050 to -0.4196, class D was -0.4195 below. The rank of landslide hazard could be divided into classes A, B, C and D by the boundary value. In the number of slope, class A was 68, class B was 115, class C was 65, and class D was 52. The rate of landslide occurrence in class A and class B was shown at the hige prediction of 83%. Therefore, dangerous areas selected by the prediction method of landslide could be mapped for land-use planning and criterion of disaster district. And also, it could be applied to an administration index for disaster prevention.

  • PDF

Predicting the Goshawk's habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea (종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-)

  • Cho, Hae-Jin;Kim, Dal-Ho;Shin, Man-Seok;Kang, Tehan;Lee, Myungwoo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.333-343
    • /
    • 2015
  • This research aims at identifying the goshawk's possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk's breeding for the future. The field research identified 10 goshawk's nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk's breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about $189.5 km^2$(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of $3,071 km^2$(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk's behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk's habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.

Development of a Integrated Indicator System for Evaluating the State of Watershed Management in the Context of River Basin Management Using Factor Analysis (요인분석을 이용한 수계 관리 맥락에서 유역관리 상태를 평가하기 위한 통합지수 개발)

  • Kang, Min-Goo;Lee, Kwang-Man;Ko, Ick-Hwan;Jeong, Chan-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.277-291
    • /
    • 2008
  • In order to carry out river basin management, it is necessary to evaluate the state of the river basin and make site-specific measures on the basis of management goals and objectives. A river basin is divided into several watersheds, which are composed of several components: water resources, social and economic systems, law and institution, user, land, ecosystems, etc. They are connected among them and form network holistically. In this study, a methodology for evaluating watershed management was developed by consideration of the various features of a watershed system. This methodology employed factor analysis to develop sub-indexes for evaluating water use management, environment and ecosystem management, and flood management in a watershed. To do this, first, the related data were gathered and classified into six groups that are the components of watershed systems. Second, in all sub-indexes, preliminary tests such as KMO (Kaiser-Meyer-Olkin) measure of sampling adequacy and Bartlett's test of sphericity were conducted to check the data's acceptability to factor analysis, respectively. Third, variables related to each sub-index were grouped into three factors by consideration of statistic characteristics, respectively. These factors became indicators and were named, taking into account the relationship and the characteristics of included variables. In order to check the study results, the computed factor loadings of each variable were reviewed, and correlation analysis among factor scores was fulfilled. It was revealed that each factor score of factors in a sub-index was not correlated, and grouping variables by factor analysis was appropriate. And, it was thought that this indicator system would be applied effectively to evaluating the states of watershed management.

A Study for Planning Optimal Location of Solar Photovoltaic Facilities using GIS (GIS를 이용한 태양광시설 설치를 위한 적정지역 선정에 관한 연구)

  • Yun, Sung-Wook;Paek, Yee;Jang, Jae-Kyung;Choi, Duk-Kyu;Kang, Donghyeon;Son, Jinkwan;Park, Min-Jung;Kang, Suk-Won;Gwon, Jin-Kyung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.243-254
    • /
    • 2019
  • With the recent accelerated policy-making and interests in new renewable energy, plans to develop and supply the new renewable energy have been devised across multiple regions in Korea. Solar energy, in particular, is being applied to small-scale power supply in provincial areas, as solar cells are used to convert solar energy into electric energy to produce electric power. Nonetheless, in the case of solar power plants, the need for a large stretch of land and considerable sum of financial support implies that the planning step should take into consideration the most suitable meteorological and geographical factors. In this study, the proxy variables of meteorological and geographical factors associated with solar energy were considered in analyzing the vulnerable areas regarding the photovoltaic power generation facility across the nation. GIS was used in the spatial analysis to develop a map for assessing the optimal location for photovoltaic power generation facility. The final vulnerability map developed in this study did not reveal any areas that exhibit vulnerability level 5 (very high) or 1 (very low). Jeollanam-do showed the largest value of vulnerability level 4 (high), while a large value of vulnerability level 3 (moderate) was shown by several administrative districts including Gwangju metropolitan city, Jeollabuk-do, Chungcheongbuk-do, and Gangwon-do. A value of vulnerability level 2 (low) was shown by the metropolitan cities including Daegu, Ulsan, and Incheon. When the 30 currently operating solar power plants were compared and reviewed, most were found to be in an area of vulnerability level 2 or 3, indicating that the locations were relatively suitable for solar energy. However, the limited data quantity for solar power plants, which is the limitation of this study, prevents the accuracy of the findings to be clearly established. Nevertheless, the significance of this study lies in that an attempt has been made to assess the vulnerability map for photovoltaic power generation facility targeting various regions across the nation, through the use of the GIS-based spatial analysis technique that takes into account the diverse meteorological and geographical factors. Furthermore, by presenting the data obtained for all regions across the nation, the findings of this study are likely to prove useful as the basic data in fields related to the photovoltaic power generation.

Analysis of Factors That Cause Light Pollution in Islands in Dadohaehaesang National Park (다도해해상국립공원 내 섬 지역의 빛공해 유발 요인 분석)

  • Sung, Chan Yong
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.433-441
    • /
    • 2022
  • Light pollution is one of the factors that disturb coastal and island ecosystems. This study examined the factors causing light pollution in the islands in Daedohaehaesang National Park using nighttime satellite images. This study selected 101 islands with an area of 100,000 m2 or more in Daedohaehaesang National Park, and measured the levels of light pollution of the selected islands by calculating mean nighttime radiance recorded in VIIRS DNB monthly images for January, April, August, and October 2019. Of seven districts of the park, The highest mean nighttime radiance was recorded in Geumodo district (17,666nW/m2/sr), followed by Geonumdo·Baekdo, Narodo, Soando·Cheongsando districts. By season, mean nighttime radiance in October was the highest at 9,509nW/m2/sr, followed by August, January, and April. Regression analyses show that the total floor area and the number of lighthouses in a 5 km buffer area had a statistically significant effect on mean nighttime radiance at all times, but those within the island did not, indicating that light pollution in islands in a national park where land development is strictly restricted is influenced by artificial lights in nearby areas. However, the total floor area of an island significantly affected mean nighttime radiance only in August, which appears to be attributed to the impact of intensive use of artificial light by visitors during summer vacation. The size of an island had a negative (-) effect on nighttime radiance. This negative effect suggests that light pollution is a type of ecological edge effect, i.e., the smaller island is more likely to have a relatively larger proportion of edge area that is affected by light emitted from the neighboring areas. The results of this study indicate that managing artificial lights in nearby areas is necessary to mitigate light pollution in islands in marine and coastal national parks.

Resolution Method of Hazard Factor for Life Safety in Rental Housing Complex (임대주택단지의 생활안전 위해요인 해소방안)

  • Sohn, Jeong-Rak;Cho, Gun-Hee;Kim, Jin-Won;Song, Sang-Hoon
    • Land and Housing Review
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • The government has been constructing and supplying public rental housing to ordinary people in order to stabilize housing since 1989. However, the public rental houses initially supplied to ordinary people are at high risk for safety accidents due to the deterioration of the facilities. Therefore, this study is aimed to propose a solution to solve the life safety hazards of the old rental housing complex as a follow-up study of Analysis of Accident Patterns and Hazard Factor for Life Safety in Rental Housing Complex. Types of life safety accidents that occur in public rental housing complexes are sliding, falling, crash, falling objects, breakage, fire accidents, traffic accidents and criminal accidents. The types of safety accidents that occur in rental housing complexes analyzed in this study are sliding, crashes, falling objects, and fire accidents. Although the incidence of safety accidents such as falling, breakage, traffic accidents and crime accidents in public rental housing complexes is low, these types are likely to cause safety accidents. The method of this study utilized interviews and seminar results, and it suggested ways to solve the life safety hazards in rental housing complexes. Interviews were conducted with residents and managers of rental housing complexes. Seminars were conducted twice with experts in construction, maintenance, asset management, housing welfare and safety. Through interviews and seminars, this study categorizes the life safety hazards that occur in rental housing complexes by types of accidents and suggests ways to resolve them as follows. (1) sliding ; use of flooring materials with high friction coefficient, installation of safety devices such as safety handles, implementation of maintenance, safety inspections and safety education, etc. (2) falling ; supplementation of safety facilities, Improvement of the design method of the falling parts, Safety education, etc. (3) crash ; increase the effective width of the elevator door, increase the effective width of the lamp, improve the lamp type (U type ${\rightarrow}$ I type), etc. (4) falling objects and breakage ; design of furniture considering the usability of residents, replacement of old facilities, enhancement of safety consciousness of residents, safety education, etc. (5) fire accidents ; installation of fire safety equipment, improvement by emergency evacuation, safety inspection and safety education, etc. (6) traffic accidents ; securing parking spaces, installing safety facilities, conducting safety education, etc. (7) criminal accidents; improvement of CCTV pixels, installation of street lights, removal of blind spots in the complex, securing of security, etc. The roles of suppliers, administrators and users of public rental housing proposed in this study are summarized as follows. Suppliers of rental housing should take into consideration the risk factors that may arise not only in the design and construction but also in the maintenance phase and should consider the possibility of easily repairing old facilities considering the life cycle of rental housing. Next, Administrators of rental housing should consider the safety of the users of the rental housing, conduct safety checks from time to time, and immediately remove any hazardous elements within the apartment complex. Finally, the users of the rental housing needs to form a sense of ownership of all the facilities in the rental housing complex, and efforts should be made not to cause safety accidents caused by the user's carelessness. The results of this study can provide the necessary information to enable residents of rental housing complexes to live a safe and comfortable residential life. It is also expected that this information will be used to reduce the incidence of safety accidents in rental housing complexes.

Analysis of the Effect of Heat Island on the Administrative District Unit in Seoul Using LANDSAT Image (LANDSAT영상을 이용한 서울시 행정구역 단위의 열섬효과 분석)

  • Lee, Kyung Il;Ryu, Jieun;Jeon, Seong Woo;Jung, Hui Cheul;Kang, Jin Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.821-834
    • /
    • 2017
  • The increase in the rate of industrialization due to urbanization has caused the Urban Heat Island phenomenon where the temperature of the city is higher than the surrounding area, and its intensity is increasing with climate change. Among the cities where heat island phenomenon occurs, Seoul city has different degree of urbanization, green area ratio, energy consumption, and population density in each administrative district, and as a result, the strength of heat island is also different. So It is necessary to analyze the difference of Urban Heat Island Intensity by administrative district and the cause. In this study, the UHI intensity of the administrative gu and the administrative dong were extracted from the Seoul metropolitan area and the differences among the administrative districts were examined. and linear regression analysis were conducted with The variables included in the three categories(weather condition, anthropogenic heat generation, and land use characteristics) to investigate the cause of the difference in heat UHI intensity in each administrative district. As a result of analysis, UHI Intensity was found to be different according to the characteristics of administrative gu, administrative dong, and surrounding environment. The difference in administrative dong was larger than gu unit, and the UHI Intensity of gu and the UHI Intensity distribution of dongs belonging to the gu were also different. Linear regression analysis showed that there was a difference in heat island development intensity according to the average wind speed, development degree, Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI) value. Among them, the SAVI and NDBI showed a difference in value up to the dong unit and The creation of a wind route environment for the mitigation of the heat island phenomenon is necessary for the administrative dong unit level. Therefore, it is considered that projects for mitigating heat island phenomenon such as land cover improvement plan, wind route improvement plan, and green wall surface plan for development area need to consider administrative dongs belonging to the gu rather than just considering the difference of administrative gu units. The results of this study are expected to provide the directions for urban thermal environment design and policy development in the future by deriving the necessity of analysis unit and the factors to be considered for the administrative city unit to mitigate the urban heat island phenomenon.

A Study on the Conservation and Management of the Village Forest in Gyeonggi-do (경기도 마을숲의 보전 및 관리에 관한 연구)

  • Hwang, Dong-Kyu;Kim, Dong-Yeob
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.4
    • /
    • pp.99-111
    • /
    • 2015
  • The objectives of this study were to investigate the location, shape, environment, and vegetation of the Village Forest in Gyeonggi-do and to evaluate the ecological integration and changes of the Village Forests to figure out the measures for conservation and management. There were 23 Village Forests remain in Gyeonggi-do. Ten Village Forests were established based on Feng-shui background. Many of them were found in Yongin area and southeast of Icheon. The Village Forests were owned by local community at 9 village and privately owned at 8 villages. Most Village Forests were managed by local communities except for the two managed by private person. Fifty-two percent of the Village Forests were in strip shape, and most of them were established by Feng-shui background or for the prevention of disasters. The average size of the Village Forests was relatively small at 3,046m2. The most frequent tree species found at the Village Forest were Zelkova serrata and Pinus densiflora. Over half of the number of Village Forests showed vertical structure of overstory trees only or overstory-sub overstory combination, which seemed to be resulted from the loss of understory plants by the activities of local residents. The Village Forests that had over 30% of damaged trees were found at 7 villages. The damages were caused by the road construction close to the groves, soil compaction, and tree death by covering lower stem with soil. The vitality of the damaged trees seemed to be significantly low compared to that of the undamaged. There were factors that determined the changes in the Village Forests: community ritual, institutional protection, designation as a water resource protection district, road construction, land use change, windstorm hazards, and development of forest areas. In order to conserve and manage the Village Forests appropriately, it is necessary to limit excessive use of the grove areas and maintain proper tree growing conditions by improving the soil environment. The development of neighborhood areas need to be controlled and community activities should be encouraged to maintain or restore the original landscape of the groves. Protection measures and supporting policies need to be enforced to keep the Village Forests from disappearing in near future.