• 제목/요약/키워드: Land Cover Change

검색결과 456건 처리시간 0.024초

SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가 (Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model)

  • 박민지;신형진;박종윤;강부식;김성준
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.

Climate Change Concerns in Mongolia

  • Dagvadorj, D.;Gomboluudev, P.;Natsagdorj, L.
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.47-54
    • /
    • 2003
  • Climate of Mongolia is a driven force on natural conditions as well as socio-economic development of the country. Due to the precariousness of climate conditions and traditional economic structure, natural disasters, specially disasters of meteorological and hydrological origin, have substantial effect upon the natural resources and socio-economic sectors of Mongolia. Mongolia's climate is characterized by high variability of weather parameters, and high frequency and magnitude of extreme climate and weather events. During the last few decades, climate of the country is changing significantly under the global warning. The annual mean air temperature for the whole territory of the country has increased by $1.56^{\circ}C$ during the last 60 years,. The winter temperature has increased by $1.56^{\circ}C$. These changes in temperature are spatially variable: winter warming is more pronounced in the high mountains and wide valleys between the mountains, and less so in the steppe and Gobi regions. There is a slight trend of increased precipitation during the last 60 years. The average precipitation rate is increased during 1940-1998 by 6%. This trend is not seasonally consistent: while summer precipitation increased by 11 %, spring precipitation decreased by 17. The climate change studies in Mongolia show that climate change will have a significant impact on natural resources such as water resources, natural rangeland, land use, snow cover, permafrost as well as major economic activities of arable farming, livestock, and society (i.e. human health, living standards, etc.) of Mongolia. Therefore, in new century, sustainable development of the country is defined by mitigating and adaptation policies of climate change. The objective of the presentation is to contribute one's idea in the how to reflect the changes in climate system and weather extreme events in the country's sustainable development concept.

  • PDF

Changes in plant community structure in relation to climate change and restoration plot areas in Mongolia

  • Lkhavgadorj, Khureltsetseg;Iderzorig, Badamnyambuu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • 제39권1호
    • /
    • pp.119-125
    • /
    • 2016
  • Mongolia has one of the strongest climate warming signals on Earth, and over 40% of the human population depends directly or indirectly on pastoral livestock production for their livelihoods. Thus, climate-driven changes in rangeland production will likely have a major effect on pastoral livelihoods . The loss of species dependent mostly on rainfall has resulted in adverse changes in the botanical composition of the steppes . Summer season in 2015 was completely dry until middle of July and, had not enough vegetation cover as last 15 years. The purpose of this study is to check plant community dynamics in Mongolia in relation to climate change in 2014 and 2015. The study sites were selected in mountain-steppe habitat in central Mongolia. In the 2014, there have been registered 81 plant species of 56 genera of 25 families on the investigated sites and, occurred 57 plant species of 44 genera of 21 families in the 2015. It is concluded that the abundance and richness of plants are directly connected to heavily affect by the climatic factor, i.e. amount of precipitation during growing season. As a same like result of climate change, in Mongolian land is going become desertification, and each spring, soil particles from Mongolia are swept up by a cold air mass into the atmosphere and blasts into south east China, Korea and Japan. The Koreans call this phenomenon the "Fifth season" or "Yellow sand", and the Chinese call it "Yellow dragon".

UAV 기반의 공간정보와 무한사면해석모형을 활용한 산사태 위험도 평가 (Landslide Hazard Evaluation using Geospatial Information based on UAV and Infinite Slope Stability Model)

  • 이근상;최연웅
    • 지적과 국토정보
    • /
    • 제45권2호
    • /
    • pp.161-173
    • /
    • 2015
  • 최근 기후변화에 따른 집중호우로 산사태 및 토석류가 발생하여 많은 인명 및 재산피해가 발생하고 있다. 본 연구에서는 UAV 측량기술을 활용하여 산사태 평가에 필요한 DSM과 정사영상을 신속하게 구축하였으며, 이를 무한사면해석모형에 적용하여 산사태 위험도를 평가하였다. 대상지역에 대한 산사태 위험도를 평가한 결과, 산사태 위험도 구간인 $SI{\leq}1.0$에서의 분포면적이 $46,396m^2$로 분석되었으며 분포비율로는 전체지역의 18.2%로 나타났다. 특히 산사태 발생이 매우 심각하여 사면보강 대책을 시급히 시행해야 되는 구간인 $SI{\leq}0.0$의 면적은 $7,988m^2$로서 전체지역의 0.8%를 차지하는 것으로 분석되었다. 또한 사면안정지수에 의한 산사태 위험도와 물골분석에 의한 토석류 위험도를 종합적으로 검토함으로써, 집중호우 시 산사태에 따른 토석류 위험지역을 선정할 수 있었다. 본 연구에서 분석한 산사태 및 토석류 위험지역은 향후 사면보강이나 주민안전대책 수립을 위한 의사결정 자료로 활용될 수 있을 것으로 판단된다.

USLExls를 이용한 복토법에 따른 필지 단위 토양유실량 분석 (Development of USLExls and its Application for the Analysis of the Impact of Soil-Filling Work on Soil Loss)

  • 김소래;유찬;이상환;지원현;장민원
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.109-125
    • /
    • 2017
  • This study aimed to develop a parcel-unit soil loss estimation tool embedded in Excel worksheet, USLExls, required for the design of contaminated farmland restoration project and to analyze the impact of the project carried out soil-filling work on soil loss. USLE method was adopted for the estimation of average annual soil loss in a parcel unit, and each erosivity factor in the USLE equation was defined through the review of previous studies. USLExls was implemented to allow an engineer to try out different combinations just by selecting one among the popular formulas by each factor at a combo box and to simply update parameters by using look-up tables. This study applied it to the estimation of soil loss before and after soil-filling work at Dong-a project area. The average annual soil loss after the project increased by about 2.4 times than before on average, and about 60 % of 291 parcels shifted to worse classes under the classification criteria proposed by Kwak (2005). Although average farmland steepness was lower thanks to land grading work, the soil loss increased because the inappropriate texture of the cover soil induced the soil erosion factor K to increase from 0.33 before to 0.78 after the soil-filling work. The results showed that the selection of cover soil for soil-filling work should be carefully considered in terms soil loss control and the estimation of change in soil loss should be mandatory in planning a contaminated farmland restoration project.

다른 원격탐사 센서로 추출한 강우자료의 이질성과 이에 의한 비선형유출반응에 미치는 영향 (Investigating Remotely Sensed Precipitation from Different Sources and Their Nonlinear Responses in a Physically Based Hydrologic Model)

  • 오남선;이길하;김상준
    • 한국수자원학회논문집
    • /
    • 제39권10호
    • /
    • pp.823-832
    • /
    • 2006
  • 강우는 물과 에너지 순환에서 가장 중요한 역할을 한다. 이 연구에서는 두개의 다른 원격탐사 센서를 이용하여 추출한 강우자료의 불확실성 (uncertainty)에 대하여 검토해 보았으며, 이에 의한 오차가 비선형 수치수문모형에서 수문인자(유출)를 모의할 때 어떻게 영향을 미치는가를 살펴보았다. 지상에서 관측된 강우 관측을 이용하여 WSR-88D (NEXRAD)에 의해 추출한 레이더 강우, 그리고 IR (Infrared) 밴드를 기반으로 하는 인공위성 강우관측을 비교 검토하였으며, 세 가지의 서로 다른 강우와 현장에서 측정된 기상자료를 입력 자료로 사용하여, 오프라인 CLM (Community Land Model) 수문모형으로 유출량을 모의하였다. 이 연구에서 물리적 이론을 기반으로 하는 CLM수문 모형의 매개변수는 지표면-대기의 수문반응 (land-atmosphere interaction)을 적절하게 묘사하도록 정의되었다고 가정한다. 다른 원격탐사 센서를 이용하여 추출한 강우자료는 시공간적으로 다른 양상을 보여 주며, 수치모형의 실험 결과는 강우입력의 불확실성이 수문반응의 결과에 어떻게 영향을 미치는지를 보여준다. 이 연구는 앞으로 우리나라에서 개발 및 활용가능성이 있는 레이더 강우와 인공위성 강우에 대한 사전 지식을 제공하고, 동시에 수치 수문모형을 수행할 때 수문반응의 불확실성에 대한 정보를 제공해 주며, 결국은 기후 변화에 따른 수자원의 재분배를 이해하는데 이바지할 것이다.

일최저기온을 이용한 부산의 도시화효과와 도시화 원인과의 상관성 분석 (Analysis of Correlation between the Cause of Urbanization and Urbanization Effect of Busan by Using Daily Minimum Temperatures)

  • 박명희;이준수;안지숙;서영상;한인성;김해동
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1477-1485
    • /
    • 2012
  • This study examined urbanization effects and the causes of urbanization, urban population growth, increase of the city scale, land cover change, and human cultures and economic activities, using the daily minimum temperatures of the past 50 years (1961-2010) with the subject of Busan and analyzed correlations between urbanization effects and the causes of urbanization. Thereby, this paper drew a conclusion as below: 1) Due to the urbanization effects, the average annual daily minimum temperature increased as about $1.2^{\circ}C$; however, except for the factor of urbanization, the increase was shown as about $0.2^{\circ}C$. The occupancy of urbanization effects in the total temperature increase was quite high as about 83%. 2) Just like other cities experiencing urbanization, Busan, too, sees population growth and the expansion of city area as well as increased urbanization effects. First of all, correlation between population growth and urbanization effect was high as 0.96 before 1985 while it was lowered as 0.19 after 1985. Also, correlation between the increase of city area and urbanization effect was high as 0.64 and 0.79 before and after 1985. 3) Regarding the correlation between long-term land use change and urbanization effect, urbanization effect was affected greatly by the increase of city area (0.97) and reduction of green area (0.92). 4) Concerning human activities possible to affect the climatic factors of a city, this paper found the following factors: road length, car increase, power use, and the consumer price index, etc. And regarding the correlation between the three factors and urbanization effect, the correlation was higher in the consumer price index (0.97), the number of registered cars (0.89), power use (0.75), and road length (0.58) in order.

Effect of Hydro-meteorological and Surface Conditions on Variations in the Frequency of Asian Dust Events

  • Ryu, Jae-Hyun;Hong, Sungwook;Lyu, Sang Jin;Chung, Chu-Yong;Shi, Inchul;Cho, Jaeil
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.25-43
    • /
    • 2018
  • The effects of hydro-meteorological and surface variables on the frequency of Asian dust events (FAE) were investigated using ground station and satellite-based data. Present weather codes 7, 8, and 9 derived from surface synoptic observations (SYNOP)were used for counting FAE. Surface wind speed (SWS), air temperature (Ta), relative humidity (RH), and precipitation were analyzed as hydro-meteorological variables for FAE. The Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), and snow cover fraction (SCF) were used to consider the effects of surface variables on FAE. The relationships between FAE and hydro-meteorological variables were analyzed using Z-score and empirical orthogonal function (EOF) analysis. Although all variables expressed the change of FAE, the degrees of expression were different. SWS, LST, and Ta (indices applicable when Z-score was < 0) explained about 63.01, 58.00, and 56.17% of the FAE,respectively. For NDVI, precipitation, and RH, Asian dust events occurred with a frequency of about 55.38, 67.37, and 62.87% when the Z-scores were > 0. EOF analysis for the FAE showed the seasonal cycle, change pattern, and surface influences related to dryness condition for the FAE. The intensity of SWS was the main cause for change of FAE, but surface variables such as LST, SCF, and NDVI also were expressed because wet surface conditions suppress FAE. These results demonstrate that not only SWS and precipitation, but also surface variables, are important and useful precursors for monitoring Asian dust events.

동북아시아 지역의 바이오매스 연소 활동이 지역 대기 환경에 미치는 영향 (Impact of Northeast Asian Biomass Burning Activities on Regional Atmospheric Environment)

  • 이권호
    • 한국지리정보학회지
    • /
    • 제15권1호
    • /
    • pp.184-196
    • /
    • 2012
  • 바이오매스 연소 활동은 인위적 또는 자연적인 원인에 의하여 발생하며 연소과정에서 다량의 대기오염물질을 배출한다. 이 과정에서 발생한 온실가스와 대기 에어러솔은 대기환경 저해와 기후변화의 원인으로 알려져 있으나 바이오매스 연소 활동에 대한 감시와 대기환경에 미치는 영향을 파악하기가 쉽지 않다. 본 연구는 동북아 지역의 바이오매스 연소 활동의 현황과 대기환경에 미치는 영향을 평가하고자, 지구관측 위성인 Terra/MODIS 관측 자료를 이용하였다. 바이오매스 연소의 발생 원인은 매우 다양하지만, 주 연료가 공급되는 토지피복과 계절별 변화에 의존하므로, 본 연구에서는 지역별 토지피복과의 관련성과 시간에 따른 현황과 변화 패턴을 분석하였다. 그 결과, 가장 넓은 영역을 차지하고 있는 녹지대 또는 상록수림 지역에서의 발생수가 많았으며, 경작지에도 많은 발생횟수를 나타내었다. 그리고 대기 오염물질 중 하나인 대기 에어러솔의 상대적인 양을 나타내는 에어러솔 광학두께자료와 연소 자료와 비교결과는 두 산출물간 뚜렷한 연중 변화와 관련성이 있는 것으로 나타났다. 즉, 바이오매스 연소 활동이 지역 대기환경에 미치는 영향을 증명하였으며, 중국대륙에서 발생빈도가 증가하고 있어 지역 대기환경 및 기후변화에 영향을 줄 것으로 예상된다.

도시열섬 적응능력 제고를 위한 옥상녹화 중점지역 선정 방안 (Selection of Green Roof Initiative Zone for Improving Adaptation Capability against Urban Heat Island)

  • 박은진
    • 한국환경복원기술학회지
    • /
    • 제17권1호
    • /
    • pp.135-146
    • /
    • 2014
  • The improvement of adaptation capability against heat island (ACHI) by greening buildings is considered as an important measure to cope with a climate change. This study aimed to select the most appropriate zones for green roof initiative in case study sites, Bucheon, Anyang, and Suwon Cities and to investigate the characteristics of buildings for greening to improve ACHI. Relative ACHI for each lot was estimated from 0 to -9, assuming that it decreases with the distance from green space and waterbody. Low adaptation capabilities were mostly shown in the old urban blocks with dense low-rise buildings and lack of green space. Three blocks with the lowest ACHIs were chosen as a green roof initiative zone in each city. They are largely residential areas including low-rise buildings such as single, multi-household houses, townhouses, 5 or lower story apartments and few are industrial areas crowded with small factory buildings. The areas of building roof available for greening are 8.8% within the selected zones in Bucheon City, 5.3% in Anyang City, and 4.9% in Suwon City. As it were, 25.2~41.7% of the roof top areas are available for greening in these zones. It means that roof top areas of $25,000{\sim}120,000m^2$ can be used for greening within the selected zones of $0.64{\sim}1.65km^2$ to improve ACHI. The approach and results of the study are significant to provide a logical basis and information on location, scale, effect, and target figure of greening as a measure to cope with climate change.