• Title/Summary/Keyword: Lanczos method

Search Result 49, Processing Time 0.026 seconds

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

Reducing Decoding Complexity by Improving Motion Field Using Bicubic and Lanczos Interpolation Techniques in Wyner-Ziv Video Coding

  • Widyantara, I Made O.;Wirawan, Wirawan;Hendrantoro, Gamantyo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2351-2369
    • /
    • 2012
  • This paper describes interpolation method of motion field in the Wyner-Ziv video coding (WZVC) based on Expectation-Maximization (EM) algorithm. In the EM algorithm, the estimated motion field distribution is calculated on a block-by-block basis. Each pixel in the block shares similar probability distribution, producing an undesired blocking artefact on the pixel-based motion field. The proposed interpolation techniques are Bicubic and Lanczos which successively use 16 and 32 neighborhood probability distributions of block-based motion field for one pixel in k-by-k block on pixel-based motion field. EM-based WZVC codec updates the estimated probability distribution on block-based motion field, and interpolates it to pixel resolution. This is required to generate higher-quality soft side information (SI) such that the decoding algorithm is able to make syndrome estimation more quickly. Our experiments showed that the proposed interpolation methods have the capability to reduce EM-based WZVC decoding complexity with small increment of bit rate.

A Study on the Dynamic Analysis in the Shaft of Turbo-Blower for Fuel Cell (연료전지용 터보압축기 회전축의 동특성 해석에 관한 연구)

  • 김홍건;나석찬;김성철;강영우;양균의;이희관;최문창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.81-87
    • /
    • 2004
  • A 3-D FEM (Finite Element Method) analysis of the turbo-blower shaft attached to a fuel cell was performed using Lanczos algorithm. The modal analysis was analyzed in order to investigate natural frequency and maximum displacement for 10 times. It was found that the first mode of natural frequency is 109.1Hz with the maximum displacement of 0.16mm while the tenth mode of natural frequency is 2464Hz with the maximum displacement of 0.25mm. Consequently, the results of modal analysis of the turbo-blower for a fuel cell system show good dynamic responses.

Accelerated Starting Vectors for Analysis of Natural Modes of Structures (구조물의 고유모드 해석을 위한 가속화된 초기벡터 구성기법)

  • 김병완;정형조;이인원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.784-787
    • /
    • 2004
  • Modified version of subspace iteration method using accelerated starting vectors is proposed to efficiently calculate free vibration modes of structures. Proposed method employs accelerated Lanczos starting vectors that can reduce the number of iterations in the subspace iteration method. Proposed method is more efficient than the conventional method when the number of required modes is relatively small. To verify the efficiency of proposed method, two numerical examples are presented.

  • PDF

Accelerated Subspace Iteration Method for Computing Natural Frequencies and Mode Shapes of Structures (구조물의 고유진동수 및 모드형상의 계산을 위한 가속화된 부분공간반복법)

  • Kim, Byoung-Wan;Kim, Chun-Ho;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.503-508
    • /
    • 2003
  • This paper proposes modified subspace iteration method for efficient frequency analysis of structures. Proposed method uses accelerated Lanczos vectors as starting vectors in order to reduce the number of iterations in the subspace iteration method. Proposed method has better computing efficiency than the conventional method when the number of desired frequencies is relatively small. The efficiency of proposed method is verified through numerical examples.

  • PDF

Comparative study on dynamic analyses of non-classically damped linear systems

  • Greco, Annalisa;Santini, Adolfo
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.679-698
    • /
    • 2002
  • In this paper some techniques for the dynamic analysis of non-classically damped linear systems are reviewed and compared. All these methods are based on a transformation of the governing equations using a basis of complex or real vectors. Complex and real vector bases are presented and compared. The complex vector basis is represented by the eigenvectors of the complex eigenproblem obtained considering the non-classical damping matrix of the system. The real vector basis is a set of Ritz vectors derived either as the undamped normal modes of vibration of the system, or by the load dependent vector algorithm (Lanczos vectors). In this latter case the vector basis includes the static correction concept. The rate of convergence of these bases, with reference to a parametric structural system subjected to a fixed spatial distribution of forces, is evaluated. To this aim two error norms are considered, the first based on the spatial distribution of the load and the second on the shear force at the base due to impulsive loading. It is shown that both error norms point out that the rate of convergence is strongly influenced by the spatial distribution of the applied forces.

Study on Principal Sentiment Analysis of Social Data (소셜 데이터의 주된 감성분석에 대한 연구)

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.49-56
    • /
    • 2014
  • In this paper, we propose a method for identifying hidden principal sentiments among large scale texts from documents, social data, internet and blogs by analyzing standard language, slangs, argots, abbreviations and emoticons in those words. The IRLBA(Implicitly Restarted Lanczos Bidiagonalization Algorithm) is used for principal component analysis with large scale sparse matrix. The proposed system consists of data acquisition, message analysis, sentiment evaluation, sentiment analysis and integration and result visualization modules. The suggested approaches would help to improve the accuracy and expand the application scope of sentiment analysis in social data.

A Modal Analysis Technique for Large Structural Systems (대형구조물의 모우드 해석방법)

  • Lee, ln Won;Lee, Chong Won;Jung, Gil Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.77-83
    • /
    • 1993
  • A modified Lanczos method combined with a substructure analysis technique was used for calculating natural frequencies and mode shapes of large structural systems. The method does not require generation and storage of stiffness and mass matrices of the entire structure. It only uses the stiffness and mass matrices of each substucture. No approximating assumptions are required other than the usual assumption of linear elastic system modelled by finite elements. Thus, natural frequencies and mode shapes for the finite element model employed are the same as those with or without the suhstructuring algorithm. To check the efficiency of the proposed method, first ten natural frequencies and the corresponding mode shapes of an open truss helicopter tail-boom structure are calculated by using it.

  • PDF

Linear Static and Free Vibration Analysis of Laminated Composite Plates and Shells using a 9-node Shell Element with Strain Interpolation (변형률 보간 9절점 쉘 요소를 이용한 적층복합판과 쉘의 선형 정적 해석 및 자유진동 해석)

  • 최삼열;한성천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.279-293
    • /
    • 2004
  • The analysis of linear static and free vibration problems of isotropic and laminated composite plates and shells is performed by the improved 9-node shell element with the new strain displacement relationship. In that relationship, the effect of new additional terms between the bending strain and displacement has been investigated in the warping problem. Natural co ordinate based strains, stresses and constitutive equations are used. The assumed natural strain method is used to alleviate both membrane and shear locking behavior from the element. The Lanczos method is employed in the calculation of the eigenvalues of laminated composite structures and the Gauss integration rule is adopted to evaluate the mass matrix. The numerical examples are compared with the analytical solutions to validate the current formulation and the results presented could be useful for the understanding of the behaviour of laminates under free vibration conditions.

Free Vibration Analysis of Non-Proportionally Damped Structures with Multiple or Close Frequencies (중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석)

  • 김만철;정형조;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.431-438
    • /
    • 1998
  • An efficient solution method is presented to solve the eigenvalue problem arising in tile dynamic analysis of non-proportionally damped structural systems with multiple or close eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the quadratic eigenvalue problem. Even if the shift value is an eigenvalue of the system, the proposed method guarantees nonsingularity, which is analytically proved. The initial values of the proposed method can be taken as the intermediate results of iteration methods or results of approximate methods. Two numerical examples are also presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF