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Accelerated Subspace Iteration Method for Computing
Natural Frequencies and Mode Shapes of Structures
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ABSTRACT

This paper proposes modified subspace iteration method for efficient frequency analysis of
structures. Proposed method uses accelerated Lanczos vectors as starting vectors in order to
reduce the number of iterations in the subspace iteration method. Proposed method has better
computing efficiency than the conventional method when the number of desired frequencies is

relatively small. The efficiency of proposed method is verified through numerical examples.

1. Introduction

The determination of natural frequencies and mode shapes is an essential step in the dynamic
analysis or buckling analysis of structures. Natural frequencies and mode shapes of structures are
determined from eigenvalue analysis. The subspace iteration method"” and the Lanczos method®
are efficient eigensolvers for structures. The subspace iteration method has been widely used and
various improved versions of the method has been employed. Among them, the subspace iteration
method with Lanczos starting subspace(a) is also efficient. The method uses Lanczos vectors as a
starting subspace. This paper focuses on the improvement of the method. Improved method is
based on squaring the dynamic matrix and similar technique was already applied to quantum

problems"” and simultaneous inverse iteration process in the subspace iteration method®®,
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This paper applied the technique to generation of Lanczos vectors that are used as starting

vectors to improve convergence of the subspace iteration method with Lanczos starting subspace.

2. Subspace iteration method with accelerated Lanczos starting subspace

The subspace iteration method with Lanczos starting subspace uses Lanczos vectors as starting

iteration vectors and the Lanczos vectors are generated from the following Lanczos algorithm

X, =X, -ax-p,.x., X =K'Mx, oY

where K, M and x, are stiffness matrix, mass matrix and /th Lanczos vector, respectively, and

K™ is called the dynamic matrix. a, and g, are scalar coefficients obtained by
@, =XTMx,, f,=(EMZ,)" @
then the next Lanczos vector is
X =X/ B, (3

In this paper, modified Lanczos alogrithm is proposed to generate accelerated Lanczos vectors
that are used as staring vectors to improve convergence of the subspace iteration method with
Lanczos starting subspace. Modified Lanczos algorithm uses the following modifed Lanczos

recursion with squared dynamic matrix
Vi=¥-7¥: =6 ¥, =K'M)y, 4
where y, is modifed Lanczos vector. y, and &, are calculated by
7, =7My,. 5,=FTMy)" (5)
and the next Lanczos vector is
Y =Y/, (6)

Squared dynamic matrix in (4) can separate Riz values more rapidly than the nonsquared dynamic
matrix in (1). Therefore, proposed Lanczos starting vectors are closer to exact eigenvector space,
resulting in reduction of the number of iterations, than conventional Lanczos starting vectors. Of
course, squared dynamic matrix requires additional cost for forward reduction and back-
substitution. However, the degree of cost reduction due to less iteration overwhelms that of cost
increase due to additional forward reduction and back-substitution. Simultaneous inverse iteration
and eigensolution of reduced system of the two methods have the same procedures as the
standard subspace iteration algorithm. Algorithm for each method is summarized in Table 1. In
Table 1, g is the number of iteration vectors (the size of subspace). If the number of desired

(7)

eigenpairs is p, ¢ is generally 2p(7). In this paper, the following error norm'"’ is used to check
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convergence.

£ = ” K¢i _}’iM‘bi ”2 (7)

i K9, I,

Table 1. Summary of algorithm for conventional and proposed subspace iteration methods

Operation Conventional Proposed
Factorization K=LDLS

Generation of starting vectors Egs.(1)~ (3) Eqgs.(4) ~(6)
Starting subspace @, =[x, X, X,] @ =[y,y,y,l
Iteration k=12,

Simultaneous inverse iteration Ek 4 =KMo,

System reduction K, = 5{ HK-&)-,( ar My, = 5{ HME)_,‘ "
Eigensolution for reduced system | K,,,Q,,, =M, Q.,A,.,

Approximate eigenvector space D, = 6,‘ Qi

Check convergence &, vs tolerance(usually10°)

3. Numerical examples

Two large building structures shown in Fig. 1 are analyzed to verify the effectiveness of the
proposed subspace iteration method. The results are compared with those of the subspace
iteration method with conventional Lanczos starting subspace. The number of iterations and

computing time are examined to compare each method.

Some results are shown in Table 2 and Fig. 2. Table 2 shows iteration counts of the two
methods and Fig. 2 compares computing time graphically. As shown in Table 2, subspace iteration
method with proposed Lanczos starting subspace has smaller number of iterations than the
subspace iteration method with conventional Lanczos starting subspace. Fig. 2 shows that
proposed method generally has less computing time than the conventional method.

Proposed method is mucn more efficient when the number of desired eigenpairs is small.
However, the proposed method is not better than the conventional method when iteration counts of
the two methods are identical. This phenomenon occurs when the number of desired eigenpairs
are large. When the number of desired eigenpairs is large, conventional Lanczos starting subspace

has already good approximations of exact eigenvector space because the size of starting subspace
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is large. In that case, accelerated Lanczos starting subspace has no gains. However, that case
occurs only when the number of desired eignepairs is somewhat large. In practical dynamic
analysis, the number of required eigenpairs is generally small because a few lower mode shapes
are dominant. Therefore, proposed method is practically useful since it has better efficiency when

the number of desired eigenpairs is small.
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Fig. 1. Example building structures: (a) E =2.1x10" Pa, I=83x10° m*, 4 = 0.01 m’, p = 7850 kg/m®, DOF
=1008 (b) E = 2.1x10" Pa, I =8.3x10° m*, A = 0.01 m’, p = 7850 kg/m’, DOF = 5040
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Table 2. Number of iterations

Sturcture (a) Structure (b)
Np. ofd.esued Conventional Proposed No. ofc!esued Conventional Proposed
__eigenpairs eigenpairs
5 13 13 10 8 4
10 12 8 20 16 5
15 10 2 30 12 1
20 5 1 40 5 1
25 9 1 50 23 1
30 14 1 60 13 1
35 7 1 70 7 1
40 3 1 80 12 1
45 21 1 90 13 1
50 14 1 100 13 1
55 16 1 110 7 1
60 15 1 120 15 1
65 10 1 130 3 1
70 4 1 140 1 1
75 1 1 150 1 1
80 1 1 160 1 1
85 1 1 170 1 1
90 1 1 180 1 1
95 1 1 190 1 1
100 1 1 200 1 1
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Fig. 2. Comparison of computing time

4. Conclusions

Subspace iteration method with accelerated starting Lanczos subspace is proposed for efficient

eigenvalue analysis of structures. From numerical analysis, the characteristics of proposed method
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can be summarized as follows:

(1) Subspace iteration method with proposed Lanczos starting subspace has smaller number of
iterations than the subspace iteration method with conventional Lanczos starting subspace because

squared dynamic matrix in proposed algorithm can accelerate convergence.

(2) Since proposed method has less computing time than the conventional method when the

number of desired eigenpairs is small, proposed method is practically efficient.
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