• 제목/요약/키워드: Lamination scheme

검색결과 21건 처리시간 0.022초

A consistent FEM-Vlasov model for laminated orthotropic beams subjected to moving load

  • Ozgan, Korhan
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.23-31
    • /
    • 2017
  • In the study, dynamic behavior of laminated orthotropic beams on elastic foundation is investigated. Consistent model presented here combines the finite element solution of the system with SAP2000 software and the calculation of soil parameters with MATLAB software using Modified Vlasov Model type elastic foundation. For this purpose, a computing tool is coded in MATLAB which employs Open Application Programming Interface (OAPI) feature of SAP2000 to provide two-way data flow during execution. Firstly, an example is taken from the literature to demonstrate the accuracy of the consistent FEM-Vlasov Model. Subsequently, the effects of boundary conditions, subsoil depth, elasticity modulus of subsoil, slenderness ratio, velocity of moving load and lamination scheme on the behavior of laminated orthotropic beams on elastic foundation are investigated on a new numerical example. It can be concluded that it is really convenient to use OAPI feature of SAP2000 to model this complex behavior of laminated orthotropic beams on elastic foundation under moving load.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Stochastic free vibration analysis of smart random composite plates

  • Singh, B.N.;Vyas, N.;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.481-506
    • /
    • 2009
  • The present study is concerned with the stochastic linear free vibration study of laminated composite plate embedded with piezoelectric layers with random material properties. The system equations are derived using higher order shear deformation theory. The lamina material properties of the laminate are modeled as basic random variables for accurate prediction of the system behavior. A $C^0$ finite element is used for spatial descretization of the laminate. First order Taylor series based mean centered perturbation technique in conjunction with finite element method is outlined for the problem. The outlined probabilistic approach is used to obtain typical numerical results, i.e., the mean and standard deviation of natural frequency. Different combinations of simply supported, clamped and free boundary conditions are considered. The effect of side to thickness ratio, aspect ratio, lamination scheme on scattering of natural frequency is studied. The results are compared with those available in literature and an independent Monte Carlo simulation.

Nonlinear thermoelastic response of laminated composite conical panels

  • Joshi, R.M.;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.97-107
    • /
    • 2010
  • Nonlinear thermoelastic static response characteristics of laminated composite conical panels are studied employing finite element approach based on first-order shear deformation theory and field consistency principle. The nonlinear governing equations, considering moderately large deformation, are solved using Newton-Raphson iterative technique coupled with the adaptive displacement control method to efficiently trace the equilibrium path. The validation of the formulation for mechanical and thermal loading cases is carried out. The present results are found to be in good agreement with those available in the literature. The adaptive displacement control method is found to be capable of handling problems with multiple snapping responses. Detailed parametric study is carried out to highlight the influence of semicone angle, boundary conditions, radius-to-thickness ratio and lamination scheme on the nonlinear thremoelastic response of laminated cylindrical and conical panels.

채널단면의 기하학적 형상변화에 따른 캔틸레버 적층구조물의 안정성 연구 (Stability of Cantilevered Laminated Composite Structures with Open Channel Section by Geometrical Shape Variations)

  • 박원태;천경식;손병직
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.169-175
    • /
    • 2004
  • 본 연구에서는 채널단면을 갖는 캔틸레버 복합적층 구조물의 안정성에 다루었다. 보다 합리적이고 효율적인 설계의 기초자료를 제시하고자 채널단면의 길이비와 곡절각도 등과 같은 기하학적 형상변화와 화이버의 보강각도에 따른 좌굴거동을 분석하고, 그에 따른 상호작용에 의한 안정성을 파악하였다. 이를 근거로 캔틸레버 복합적층 구조물의 적절한 채널단면 및 복합재료의 적층구조형식 등을 공학적 측면에서 고찰하고 제시하였다.

비등방성 복합적층판 및 쉘의 고차전단변형을 고려한 비감쇄 동적응답 (Undamped Dynamic Response of Anisotropic Laminated Composite Plates and Shell Structures using a Higher-order Shear Deformation Theory)

  • 윤석호;한성천;장석윤
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.333-340
    • /
    • 1997
  • 본 연구에서는 복합재료로 구성된 복합적층판 및 쉘에 대하여 3차 전단 변형이론을 이용한 변위를 가정하여 단순지지 경계조건을 만족하는 변위형상함수를 퓨리예급수로 전개하고 동적 평형 방정식을 유도하여 뉴마크의 수치적분법을 사용하여 단면특성계수, 재료의 특성, 층의 배열에 따른 복합적층판 및 쉘의 비감쇄 동적응답특성을 연구하였다.

  • PDF

Measurement reliability of irreversible stress/strain limits in Sn-Cu double layer stabilized IBAD/RCE-DR processed GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Bautista, Zhierwinjay;Diaz, Mark Angelo;Shin, Hyung-Seop;Lee, Jae-Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.36-40
    • /
    • 2018
  • In this study, the electromechanical properties in Sn-Cu double layer stabilized GdBCO coated conductor (CC) tapes with and without external lamination under uniaxial tension were examined at 77 K and self-field. Their irreversible stress and strain limits were determined using a loading-unloading scheme based on different critical current ($I_c$) recovery criteria. The repeated tests were performed and statistical estimation was done to check the reproducibility depending on the criterion adopted in evaluating the electromechanical properties. From the results, it showed that the Sn-Cu double-layer stabilized CC tapes have the higher irreversible stress limit, but lower irreversible strain limit as compared to brass laminated ones. Through the repeated tests, it can be found that a small scattering of irreversible limits existed in both CC tape samples. Finally, similar strain sensitivity of $I_c$ in both CC tapes was obtained.

Performance evaluation of differently structured RCE-DR GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Diaz, Mark Angelo E.;Shin, Hyung-Seop;Jung, Ho-Sang;Lee, Jaehun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.13-17
    • /
    • 2022
  • The mechanical properties of REBCO coated conductor (CC) tapes under uniaxial tension are mainly determined by the thick layer Components like the substrate and the stabilizer. Depending on the applications of the CC tapes, it is also needed to externally reinforce thin metallic foils to one side or both sides of the CC tapes. This study investigated the effect of additional stabilizer layers or lamination on the electrical resistivity and electromechanical properties in RCE-DR processed GdBCO CC tapes with different structures. The strain/stress tolerance of Ic in differently processed 12 mm-wide REBCO CC tapes under uniaxial tension at 77 K and self-field could be determined by the loading-unloading scheme. As a result, Sn-Cu stabilized CC tape showed a significant decrease in mechanical properties due to its soft but thick stabilizing layer. However, similar electromechanical properties have been observed on both Sn-Cu and Sn-stabilized CC tapes, the Ic degradation behavior was independent of whether the CC tape has an external reinforcement or different stabilizing layers.

Improvement of Degradation Characteristics in a Large, Racetrack-shaped 2G HTS Coil for MW-class Rotating Machines

  • Park, Heui Joo;Kim, Yeong-chun;Moon, Heejong;Park, Minwon;Yu, Inkeun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1166-1172
    • /
    • 2018
  • Degradation due to delamination occurs frequently in the high temperature superconductors (HTS) coil of rotating machines made with 2nd generation (2G) HTS wire, and the authors have observed other similar cases. Since an HTS field coil for a rotating machine is required to have stable current control and maintain a steady state, co-winding techniques for insulation material and epoxy resin for shape retention and heat transfer improvement are applied during coil fabrication. However, the most important limiting factor of this technique is delamination, which is known to be caused by the difference in thermal expansion between the epoxy resin and 2G HTS wire. Therefore, in this study, the experimental results of mixing the ratio of epoxy resin and alumina ($Al_2O3$) filler were applied to the fabrication of small and large test coils to solve the problem of degradation. For the verification of this scheme, eight prototypes of single pancake coils with different shapes were fabricated. They showed good results. The energization and operation maintenance tests of the stacked coils were carried out under liquid neon conditions similar to the operation temperature of an MW-class rotating machine. In conclusion, it was confirmed that the alumina powder mixed with epoxy resin in an appropriate ratio is an effective solution of de-lamination problem of 2G HTS coil.

소형 위그선 선저판의 구조안전성 평가에 관한 연구 (Structural Analysis of the Bottom Plate of Small WIG Craft)

  • 정한구;노인식
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.697-702
    • /
    • 2010
  • A WIG(Wing-In-Ground effect) craft flies close to the water surface by utilizing a cushion of relatively high pressurized air between its wing and water surface. This implies that when one designs such craft it is important to have lightweight structures with adequate strength to resist external loads with some margins. To investigate this requirement, this paper deals with the structural analysis of the bottom plate of small WIG craft having a design landing weight of 1.2-ton. As building materials for the WIG craft, pre-preg carbon/epoxy composites are considered. The strength information of the bottom plate is obtained using the first-ply-failure analysis in conjunction with a mid-plane symmetric laminated plate theory. As a result, the first-ply-failure location, load and deflection of the bottom plate are obtained. The calculated strength information is compared with the water reaction load for the bottom plate of seaplanes considered when they land on the water surface -the same fluid-structure interaction mechanism as that of WIG craft. In the calculation of seaplane water reaction load information, the rules shown in FAR(Federal Aviation Regulations) Part 25 are used. Through the comparison, the structural integrity of the bottom plate for the WIG craft is checked.