• Title/Summary/Keyword: Lamination pattern

Search Result 34, Processing Time 0.025 seconds

Design and Manufacturing Factors of Micro-via Buildup Substrate Technology

  • Tsukada, Yutaka
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.09a
    • /
    • pp.183-192
    • /
    • 2001
  • 1- Buildup PCB technology is utilized to a bare chip attach substrate technology for packaging of semiconductor chip 2- Requirement for the substrate design rule is described in SIA International Technology Roadmap for Semiconductor. 3- There are seven fabrication methods of build-up technology. 4- Coating and lamination for resin and photo, and laser for micro via hope processes are available. Below $50\mu\textrm{m}$ in diameter is possible. 5- Fine pitch lines down to $30\mu\textrm{m}$ can be achieved by pattern plating with better electrical property. 6- Dielectric loss reduction is a key material improvement item for next generation build-up technology. 7- High band width up to 512 GB/s is possible with current wiring groundrule.

  • PDF

Study on Frame Stiffness based on Lamination Pattern of Carbon Bicycle Frame Materials (카본 자전거 프레임 소재의 적층 패턴에 따른 프레임 강성 연구)

  • Choi, Ung-Jae;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.51-58
    • /
    • 2021
  • The notion of leisure has changed with industrial development and improvement in life quality. Bicycling is a healthy sport; it is an exercise performed while enjoying nature. There have been many changes in the materials that are used to manufacture the bicycle frame. Iron and aluminum have been mainly used in bicycle frames. However, carbon-based materials are lighter and stronger than metal frames. The bicycles made of carbon composite changes frame rigidity depending on the direction of the carbon sheet sacking angle. We study the direction of composite material and how they affect the stiffness of frames based on the stacking angle.

Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF (액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성)

  • Jung, Hung Jun;Lee, In Hwan;Kim, Ho-Chan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

Nano-Scale Cu Direct Bonding Technology Using Ultra-High Density, Fine Size Cu Nano-Pillar (CNP) for Exascale 2.5D/3D Integrated System

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2016
  • We propose nano-scale Cu direct bonding technology using ultra-high density Cu nano-pillar (CNP) with for high stacking yield exascale 2.5D/3D integration. We clarified the joining mechanism of nano-scale Cu direct bonding using CNP. Nano-scale Cu pillar easily bond with Cu electrode by re-crystallization of CNP due to the solid phase diffusion and by morphology change of CNP to minimize interfacial energy at relatively lower temperature and pressure compared to conventional micro-scale Cu direct bonding. We confirmed for the first time that 4.3 million electrodes per die are successfully connected in series with the joining yield of 100%. The joining resistance of CNP bundle with $80{\mu}m$ height is around 30 m for each pair of $10{\mu}m$ dia. electrode. Capacitance value of CNP bundle with $3{\mu}m$ length and $80{\mu}m$ height is around 0.6fF. Eye-diagram pattern shows no degradation even at 10Gbps data rate after the lamination of anisotropic conductive film.

Striation of coated conductors by photolithography process

  • Byeong-Joo Kim;Miyeon Yoon;Myeonghee Lee;Sang Ho Park;Ji-Kwang Lee;Kyeongdal Choi;Woo-Seok Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.50-53
    • /
    • 2023
  • In this study, the photolithography process was chosen to reduce the aspect ratio of the cross-section of a high-temperature superconducting (HTS) tape by dividing the superconducting layer of the tape. Reducing the aspect ratio decreases the magnetization losses in the second-generation HTS tapes generated by AC magnetic fields. The HTS tape used in the experiment has a thin silver (Ag) layer of about 2 ㎛ on top of the REBCO superconducting layer and no additional stabilizer layer. A dry film resist (DFR) was laminated on top of the HTS tape by a lamination method for the segmentation. Exposure to a 395 nm UV lamp on a patterned mask cures the DFR. Dipping with a 1% Na2CO3 solution was followed to develop the uncured film side and to obtain the required pattern. The silver and superconducting layers of the REBCO films were cleaned with an acid solution after the etching. Finally, the segmented HTS tape was completed by stripping the DFR film with acetone.

Implementation of an Electrode Positioning System to Improve the Accuracy and Reliability of the Secondary Battery Stacking Process (2차 전지 적층 공정의 정확성과 신뢰성 향상을 위한 전극 위치결정 시스템 구현)

  • Lee, June-Hwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.219-225
    • /
    • 2021
  • As for the battery package method, a prismatic package method is preferred for stability reasons, but it is rapidly expanding due to the stability verification of a pouch type package. The pouch type using the lamination process has an advantage of high battery energy density because it can reduce space waste, but has a disadvantage of low productivity. Therefore, in this paper, by extracting edge detection algorithm precision, pattern algorithm precision, and motion controller recall rate by improving backlight lighting fixtures to minimize light diffusion, securing standards for stereo camera position relationship displacement monitoring, and securing standards for lens release monitoring. We propose to implement a system that ensures accuracy and reliability in positioning. As a result of the experiment, the proposed system shows an average error range of 0.032mm for edge detection, 0.02mm for pattern algorithm, and 0.014mm for motion controller, thus ensuring the accuracy and reliability of the positioning mechanism.

Sedimentation and Distribution Pattern of the Fine-grained Sediments in the Southeastern Inner Shelf of Korea (한국 남동해역 내대륙붕 세립퇴적물의 분포 및 퇴적작용)

  • YOO Dong Geun;KIM Gil Young;LEE Ho Young;SEO Young Kyo;PARK Soo Chul;KIM Dae Choul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.159-169
    • /
    • 2004
  • Sedimentation and depositional pattern of the fine-grained sediments in the southeastern inner shelf of Korea were studied using a very high-resolution seismic profiles and sediment data. The recent mud deposits up to 45 m thick are distributed in the inner shelf forming a nearshore belt from the eastern part of Geoje Island to off the Pohang along the coast. The sediment in this area consists of homogeneous mud with mean grain size between $8.6\;to\;5.3\phi$ and does not show any distinct variability It gradually becomes finer and well sorted northeastward along the coast. Sediments normally appear as structureless massive mud but X-radiographs show that some bioturbation and faint lamination are present. The sediments accumulate at a rate of 0.18-0.44 cm/yr and the rate coincides well with the long-term (a 1000-year scale) accumulation based on very high-resolution seismic data. Distribution of wet bulk density and velocity shows a gradual increase from the southeastern part of Ulsan to off Pohang, whereas porosity shows a reverse pattern. Correlations between velocity and porosity/mean grain size are different from other regions compared, due to the difference of sediment texture and sedimentary environment. The recent shelf deposits are seismically characterized by three distinct facies: 1) well-stratified (near the river mouth), 2) semi-transparent (eastern part of Geoje Island), and 3) transparent (off Ulsan). The results suggest that fine-grained sediment derived from rivers, forming a nearshore mud belt, have been transported northeastward by the northeastward-flowing coastal current.

Study on the Neutral Axis of Glulam and its Mechanical Properties (적층목질재(積層木質材)(Glulam)의 중립축(中立軸)과 강도적(强度的) 성질(性質)에 관한 연구(硏究))

  • Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.42-52
    • /
    • 1990
  • In this study, thick 24mm glulams were composed of thick. 3, 4, 6, 8mm Larch laminas to study that the theoretical analysis and the experimental analysis regarding the location of neutral axis of the glulams were compared, and to study on the effect of location of neutral axis on mechanical properties of glulam. The variation of location of neutral axis after proportional limit(or elastical limit) was studied to offer basic data to make the better composition method of glulam. The result obtained can be summarized as follows: 1. The theoretical neutral axis was 0.547 in solid wood, and also 0.547 in glulams because glulams were composed of only Larch laminas. 2. In solid wood, the deviation of the theoretical and the experimental neutral axis location was 0.1%, But in glulams, the deviation from-12.2% to + 7.8% showed nonuniform pattern but no large deviation. Because laminas was only of Larch and so the mechanical properties of laminas were monotonous. 3. The neutral axis exerted no influance on the elasticity of glulam, which meaned that the maximum shear strength in the neutral axis showed no influance on elasticity limit. 4. The only minutely lower elasticities of glulam than that of solid wood were shown. This was because of influance of glue lines of glulam on the elasticlties. 5. The failure type of glulam was wholly simple tension failure and the horizontal shear failure near neutral axis was not taken place, which was that glue line was complete in bonding and the strength of the lamina was not various but uniform. 6. The ratio of tension strain($^{\varepsilon}t$) I compression strain($^{\varepsilon}c$) initially showed uniform level After the elasticity limit. the ratio was increased with the flow of time and so the tension strain was more increased than compression strain. So this proved tension lamination technique, which is that the mechanical properties of glulam could be improved, if the lamina of more superior strength would he added on the bottom side of the glulam.

  • PDF

Development of Low-Velocity Impact Analysis Model of Carbon-Steel Laminates through Finite Element Analysis (유한요소해석을 통한 탄소섬유-연강 적층판의 저속 충격 해석 모델 개발)

  • Park, Byung-Jin;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.215-220
    • /
    • 2018
  • In this study, finite element analysis of Carbon-Steel Laminates with different layup pattern was conducted to verify similarity to the results of previous studies and to develop the effective model for low-velocity impact analysis. As in the experiment, Finite element analysis of the Fiber metal laminates (FMLs) with five different lamination patterns was carried out, and the impact resistance of the FMLs was confirmed by comparing the energy absorption ratio. The FMLs showed the higher energy absorption ratio than the mild steel having the same thickness, and it was confirmed that all the FMLs had the high energy absorption ratio over than 96%. In addition, the low-velocity impact analysis model proposed in this study can be effectively used to study composite forms and automotive structures.

Fabrication of Laminated Multi-layer Flexible Substrate with Cu/Sn Via (Cu/Sn 비아를 적용한 일괄적층 방법에 의한 다층연성기판의 제조)

  • Lee H. J.;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.1-5
    • /
    • 2004
  • A multi-layer flexible substrate is composed of copper(Cu)/polyimide that are known as good electrical conductivity, and low dielectric constant, respectively. In this study. conductor line of $5{\mu}m$-pitch was successfully fabricated without non-uniform pattern shape by electroplating copper and coating polyimide on patterned stainless steel. For multi-layer flexible substrate, via holes were drilled by UV laser and filled with electroplating copper and tin. And then, the PI layer with vias and conductor lines was stripped from stainless steel substrate. The PI layers were laminated at once with careful alignment between layers. Solid state reaction between tin and copper during lamination formed the intermetallic compounds of $Cu_6Sn_5$($\eta$-phase) and $Cu_3Sn$($\epsilon$-Phase) and achieved a complete inter-connection by vertically positioning the plugged via holes on via pad. The via formation process has several advantages; such as better electrical property and lower cost than V type via and paste via.

  • PDF