• Title/Summary/Keyword: Laminated composite structure

검색결과 188건 처리시간 0.021초

복합재 적층 구조물의 코너 부 파손 해석을 위한 자동화 소프트웨어 개발 (Development of Automation Software for Corner Radius Analysis of Composite Laminated Structure)

  • 현주하;문용호;하석운
    • 융합정보논문지
    • /
    • 제8권3호
    • /
    • pp.107-114
    • /
    • 2018
  • 최근 항공 산업이 활성화됨에 따라 복합재 관련 해석 소프트웨어의 개발이 요구되고 있다. 복합재 해석은 전문적인 구조 해석 및 시험 평가가 필요하다. 따라서 복합재 구조 해석을 위해서는 기존의 상용 소프트웨어를 사용할 수밖에 없으나 기존의 상용 소프트웨어들은 제한적인 기능만을 제공하고 있다. 특히 항공기 복합재 스파 구조물의 코너 부 구조 해석에 특화된 소프트웨어는 전무하기 때문에 구조 해석에 많은 인적 자원과 시간이 소비되고 있다. 이를 해소하기 위해서 기존의 코너 부 구조 해석 절차를 반영하고 복수의 파손 기준을 제공하는 사용자 친화적인 GUI 기반의 자동화 소프트웨어를 개발하였다. 개발한 소프트웨어의 구조 해석 결과에 대한 신뢰성을 검증하기 위해 기존의 구조 해석 결과와 비교한 결과, 구조 해석 성능에 문제가 없음을 확인하였다.

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

Mixing Rules of Young's Modulus, Thermal Expansion Coefficient and Thermal Conductivity of Solid Material with Particulate Inclusion

  • Hirata, Yoshihiro;Shimonosono, Taro
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.43-49
    • /
    • 2016
  • This analyzed a Young's modulus (E), a thermal expansion coefficient (TEC, ${\beta}$) and a thermal conductivity (${\kappa}$) of the material with simple cubic particulate inclusion using two model structures: a parallel structure and a series structure of laminated layers. The derived ${\beta}$ equations were applied to calculate the ${\beta}$ value of the W-MgO system. The accuracy was higher for the series model structure than for the parallel model structure. Young's moduli ($E_c$) of sintered porous alumina compacts were theoretically related to the development of neck growth of grain boundary between sintered two particles and expressed as a function of porosity. The series structure model with cubic pores explained well the increased tendency of $E_c$ with neck growth rather than the parallel structure model. The thermal conductivity of the three phase system of alumina-mullite-pore was calculated by a theoretical equation developed in this research group, and compared with the experimental results. The pores in the sintered composite were treated as one phase. The measured thermal conductivity of the composite with 0.5-25% porosity (open and closed pores) was in accordance with the theoretical prediction based on the parallel structure model.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

최적 적층구조를 위한 보강된 복합적층판의 좌굴강도 해석 (Buckling Strength Analysis of Stiffened Composite Plates for the Optimum Laminate Structure)

  • 김학률;이재욱
    • 대한조선학회지
    • /
    • 제26권3호
    • /
    • pp.21-28
    • /
    • 1989
  • 좌굴강도의 관점에서 보강된 복합적층판의 최적 적층 구조를 해석하였다. 복합적층판의 해석에서는 판두께 방향의 전단 변형 효과를 고려한 유한요소법이 적용되었고, 보강 평판의 모델은 판과 비임 요소로 구성되었으며 판의 적층 두께는 동일한 두께의 적층과 대칭으로 이루어졌다. 유리섬유의 방향을 변화시킴으로써 적층 두께의 최적구조를 얻었는데, $[-45^{\circ}/45^{\circ}/90^{\circ}/0^{\circ}]_3$을 갖는 적층판의 경우 가장 큰 좌굴하중을 얻었다. 이 경우 적층수는 8층 이상이었고, 특기할 사항은 같은 방향의 유리섬유층을 모두 함께 모아서 진술한 최적 적층의 구성에 따른 적층판이 가장 큰 좌굴 강도를 나타내었다.

  • PDF

Vibration-based delamination detection of composites using modal data and experience-based learning algorithm

  • Luo, Weili;Wang, Hui;Li, Yadong;Liang, Xing;Zheng, Tongyi
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.685-697
    • /
    • 2022
  • In this paper, a vibration-based method using the change ratios of modal data and the experience-based learning algorithm is presented for quantifying the position, size, and interface layer of delamination in laminated composites. Three types of objective functions are examined and compared, including the ones using frequency changes only, mode shape changes only, and their combination. A fine three-dimensional FE model with constraint equations is utilized to extract modal data. A series of numerical experiments is carried out on an eight-layer quasi-isotropic symmetric (0/-45/45/90)s composited beam for investigating the influence of the objective function, the number of modal data, the noise level, and the optimization algorithms. Numerical results confirm that the frequency-and-mode-shape-changes-based technique yields excellent results in all the three delamination variables of the composites and the addition of mode shape information greatly improves the accuracy of interface layer prediction. Moreover, the EBL outperforms the other three state-of-the-art optimization algorithms for vibration-based delamination detection of composites. A laboratory test on six CFRP beams validates the frequency-and-mode-shape-changes-based technique and confirms again its superiority for delamination detection of composites.

복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석 (Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator)

  • 정재한;박기훈;박훈철;윤광준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

4절점 응축 셸 요소를 이용한 복합재 적층 구조물의 전단응력 예측

  • 최누리;이병채
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2292-2301
    • /
    • 2000
  • We propose an accurate and efficient estimation method of transverse shear stresses for analysis and design of laminated composite structures by 4-node quadrilateral degenerated shell elements. To get proper distributions of transverse shear stresses in each layer, we use 3-dimensional equilibrium equations instead of constitutive equations with shear correction factors which vary diversely according to the shapes of shell sections. Three dimensional equilibrium equations are integrated through the thickness direction with complete polynomial membrane stress fields, which are recovered by REP (Recovery by Equilibrium in Patches) recovery method. The 4-node quadrilateral degenerated shell element used in this paper has drilling degrees of freedom and shear stresses derived from assumed strain fields that are set up at natural coordinate systems. The numerical results demonstrate that the proposed estimation method attains reasonable accuracy and efficiency compared with other methods and FE analysis using 4-node degenerated shell elements.

적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별 (Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet)

  • 오세희;한재흥;오일권;신원호;김천곤;이인;박종흥
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.228-233
    • /
    • 2001
  • Satellite system experiences severe mechanical loads during the launch period. Therefore, positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading condition during the launch period. This paper presents modal and stress analysis result due to quasi-static loads for the satellite antenna system. The failure tendency for the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

다축 구조 S-2 유리섬유 복합재의 충격 특성 (Impact Properties of S-2 Glass Fiber Composites with Multi-axial Structure)

  • 송승욱;이창훈;변준형;황병선;엄문광;이상관
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.71-75
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process have been utilized for providing through-thickness reinforcements. 2D preforms were stacked with S-2 glass plain weave and S-2 glass MWK (Multi-axial Warp Knit) L type. 3D preforms were fabricated using the stitching process. All composite samples were fabricated by RTM (Resin Transfer Molding) process. To examine the damage resistance performance the low speed drop weight impact test has been carried out. For the assessment of damage after the impact loading, specimens were examined by scanning image. CAI (Compressive After Impact) tests were also conducted to evaluate residual compressive strength. Compared with 2D composites, the damage area of 3D composites was reduced by 20-30% and the CAI strength showed 5-10% improvement.

  • PDF