• Title/Summary/Keyword: Laminated Shell

Search Result 216, Processing Time 0.025 seconds

Postbuckling Behavior of Composite Laminated Cylinder under Lateral Pressure (횡방향 압력을 받는 복합적층 원통실린더의 좌굴후 거동해석)

  • 조종두;김헌주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.843-846
    • /
    • 1994
  • The bucking and postbuckling behavior of composite laminated long cylinders under lateral pressure are investigated by the nonlinear finite element method. A long cylinder of 3-D shell problem is modelled as 2-D plane strain problem for analysis. And for the finite element analysis, eight nodes quadratic element is utilized. Arc-length method is adopted for the iteration and load-increment along postbuckling equilibrium path. The composite laminated cylinders in study are composed of cross-plied uniaxially reinforced shells. As a prsult, buckling load and postbuckling behavior are discussed.

  • PDF

An accurate approach for buckling analysis of stringer stiffened laminated composite cylindrical shells under axial compression

  • Davood Poorveis;Amin Khajehdezfuly;Mohammad Reza Sardari;Shapour Moradi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.543-562
    • /
    • 2024
  • While the external axial compressive load is applied to only the shell edge of stringer-stiffened shell in the most of numerical and analytical previous studies (entitled as conventional approach), a part of external load is applied to the stringers in real conditions. It leads to decrease the accuracy of the axial buckling load calculated by the conventional eigenvalue analysis approach performed in the most of previous studies. In this study, the distribution of stress in the pre-buckling analysis was enhanced by applying the axial external compressive load to both shell and stringers to perform an accurate eigenvalue analysis of the stringer-stiffened composite shell. In this regard, a model was developed in FORTRAN environment to simulate the laminated stringer-stiffened shell under axial compressive load using finite strip method. The axial buckling load of the shell was obtained through eigenvalue analysis. A comparison was made between the results obtained from the model and those available in the previous studies to evaluate the validity of the results obtained from the model. Through a parametric study, the effects of different parameters such as stringer properties and composite layup on the buckling load of the shell under different loading patterns were investigated. The results indicated that in some cases, the axial buckling load obtained for the conventional approach used in the most of previous studies is significantly overestimated or underestimated due to neglecting the stringer in distribution of external load applied to the stringer-stiffened shell. According to the results obtained from the parametric study, some graphs were derived to show the accuracy of the axial buckling load obtained from the conventional approach utilized in the literature.

Linear Static and Free Vibration Analysis of Laminated Composite Plates and Shells using a 9-node Shell Element with Strain Interpolation (변형률 보간 9절점 쉘 요소를 이용한 적층복합판과 쉘의 선형 정적 해석 및 자유진동 해석)

  • 최삼열;한성천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.279-293
    • /
    • 2004
  • The analysis of linear static and free vibration problems of isotropic and laminated composite plates and shells is performed by the improved 9-node shell element with the new strain displacement relationship. In that relationship, the effect of new additional terms between the bending strain and displacement has been investigated in the warping problem. Natural co ordinate based strains, stresses and constitutive equations are used. The assumed natural strain method is used to alleviate both membrane and shear locking behavior from the element. The Lanczos method is employed in the calculation of the eigenvalues of laminated composite structures and the Gauss integration rule is adopted to evaluate the mass matrix. The numerical examples are compared with the analytical solutions to validate the current formulation and the results presented could be useful for the understanding of the behaviour of laminates under free vibration conditions.

Nonlinear Strength Analysis of Laminated Composite Cylindrical Shells for the Optimum Laminate Structure (복합적층 원통형구각의 최적구조를 위한 비선형해석)

  • C.W.,Yum;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.45-56
    • /
    • 1990
  • This study deals with the nonlinear strength analysis of laminated composite cylindrical shells to find the optimum structure of pressure vessel. By applying the F.E.M. using the 8-node degenerated Isoparametric shell element and Total Lagrangian formulation and being adopted Newton-Raphson method with incremental load as a solution scheme. the optimum structure is found from the viewpoint of minimum displacement. As a results of linear analysis on the 9 cases of laminated structure, $[50^{\circ}/-50^{\circ}]$ composition of the shell laminate give the minimum deflection. In case of the nonlinear analysis by applying Quadratic Failure Criteria on laminated combination $[{\theta}^{\circ}/-{\theta}^{\circ}]$, shell laminate structure of ${\theta}=50^{\circ}$ under external uniform pressure was founded as a optimum structure and ${\theta}=50^{\circ}$ for the case of external and axial loading combined.

  • PDF

Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method

  • Shahmohammadi, Mohammad Amin;Azhari, Mojtaba;Saadatpour, Mohammad Mehdi
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.361-376
    • /
    • 2020
  • This paper presents a free vibration analysis of shell panels made of functionally graded material (FGM) in the form of the ordinary and sandwich FGM and laminated shells using the isogeometric B3-spline finite strip method (IG-SFSM). B3-spline and Lagrangian interpolation are employed along the longitudinal and transverse directions respectively in this type of finite strip. The introduced finite strip formulation is based on the degenerated shell method, which provides variable thickness, arbitrary geometries, and analysis of thin or thick shells. Validity of the obtained natural frequencies by IG-SFSM is checked by comparison with results extracted from references for similar cases in different examples. These examples incorporate several geometries, materials, boundary conditions, and continuous thickness variation. A comparison of these two kinds of results and their proximity showed that the introduced IG-SFSM is a reliable tool which can be used in analysis of shells with the aforementioned properties.

An Improved Degenerated Shell Element for Analysis of Laminated Composite Structures (복합적층구조 해석을 위한 개선된 쉘요소)

  • Choi, Chang Koon;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.1-10
    • /
    • 1991
  • The paper is concerned with the analysis of laminated composite shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements. The resulting non-linear equilibrium equations are solved by the Newton-Raphson method. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes (다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석)

  • Park, Hae-Gil;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.24-34
    • /
    • 2010
  • This paper analyzed the partial differential equations of laminated composite shells of revolution by using the finite difference method. The proof that numerical results are reasonable and accurate is obtained through converge ratio analysis and commercial program LUSAS for the structural analysis. The purpose of this study is to examine closely the engineering advantages and to analyze the structural behaviors of the anisotropic shells of revolution. Thus, the relevant reinforcement and most suitable arrangement of fiber to produce the highest strength are proposed through the numerical results according to a variety of parameter study. Namely, the distribution of displacements and stress resultants are analyzed according to the change of meridian's curvature, the ratio of height-width of shell, subtended angle, fiber angle, and so on. Using these distribution, the most suitable shell may be proposed to produce the highest strength. Also, the configuration of the entire laminated composite conical shells is analysed, and a variety of the design criterion of circular conical shell are proposed and studied in engineering view points.

  • PDF

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

Super convergent laminated composite beam element for lateral stability analysis

  • Kim, Nam-Il;Choi, Dong-Ho
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.175-202
    • /
    • 2013
  • The super convergent laminated composite beam element is newly derived for the lateral stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the first-order shear deformation beam theory. The present laminated beam takes into account the transverse shear and the restrained warping induced shear deformation. The second-order coupling torque resulting from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, the stability equations and force-displacement relationships are derived and the explicit expressions for the displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is determined using the force-displacement relationships. In order to show accuracy and superiority of the beam element developed by this study, the critical lateral buckling moments for bisymmetric and monosymmetric I-beams are presented and compared with other results available in the literature, the isoparametric beam elements, and shell elements from ABAQUS.