• 제목/요약/키워드: Laminated Composite Layer

검색결과 146건 처리시간 0.022초

Dynamic stability analysis of laminated composite plates in thermal environments

  • Chen, Chun-Sheng;Tsai, Ting-Chiang;Chen, Wei-Ren;Wei, Ching-Long
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.57-79
    • /
    • 2013
  • This paper studies the dynamic instability of laminated composite plates under thermal and arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial differential equations of motion are established by a perturbation technique. Then, the Galerkin method is applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin's method, the system equations of Mathieu-type are formulated and used to determine dynamic instability regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant influence on the thermal dynamic behavior of laminated plates.

시스템식별과 최적제어를 이용한 지능형 복합적층판의 다중보드 진동제어 (Multi-modal Vibration Control of Intelligent Laminated Composite Plates Using System Identification and Optimal Control)

  • 김정수;강영규;박현철
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.5-11
    • /
    • 2002
  • Active vibration control of intelligent laminated composite plates is performed experimental1y Laminated composite place is modeled by the system identification method. For the system identification process, the laminated composite place is excited by two piezoelectric actuators with PRBS signals. At the same time, the displacement of the laminated composite plate is measured by a gap sensor. From these excited PRBS signals and the measured displacement sequence, system parameters of the laminated composite plate are estimated using a recursive prediction error method. Model of the laminated composite plate with two piezoeletric actuators is assumed to be the form of ARMAX. From the estimated ARHMAX model, a state space equation of the observable canonical form is obtained. With this state space equation, a controller and an observer for active vibration control is designed using the optimal control method. Controller and observer are implemented on a digital system. Experiments on the vibration control are Performed with changing the outer layer fiber orientation of intelligent composite plates.

압전재료와 점탄성 재료를 이용한 지능 복합적층보의 하이 브리드 진동제어 (Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material)

  • 강영규
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.148-153
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping hale been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

반응면 기법을 이용한 적층복합재료판의 신뢰성해석 (Reliability Analysis of laminated Composite Panel using Response Surface Method)

  • 방제성;김용협
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.187-190
    • /
    • 2001
  • Response surface method is applied to evaluate the reliability of laminated composite panels. Since the linear and nonlinear first-ply failure load are computed using deterministic finite element analysis, new probabilistic finite element analysis is not necessary. Tsai-Wu criterion is used to construct the limit state suface. Material properties, layer thickness and lamina strengths of laminated composite panel are treated as random design variables. feasibility and accuracy of current method is validated using Monte-Carlo method Which perform thousand times of finite element analysis directly.

  • PDF

전기장에 따른 복합재 ER Beam의 진동제어 특성 (Vibration Control Characteristics of Laminated Composite ER Beams with Electric Field Dependence)

  • 김재환;강영규;최승복
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.416-421
    • /
    • 2001
  • The flexural vibration of laminated composite beams with an electro-rheological(ER) fluid has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, mu1ti-layer laminated beams. The damping radio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. Finite element method is used for the analysis of dynamic characteristics of the laminated composite beams with an ER fluid. For the validation of modeling methodology using viscoelastic theory the predicted dynamic properties are compared to the measured ones by author's previous work. They are in good agreement. This paper addresses a design strategy of laminated composite under flexural vibrations with an ER fluid.

  • PDF

Active vibration control of smart composite structures in hygrothermal environment

  • Mahato, P.K.;Maiti, D.K.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.127-138
    • /
    • 2012
  • The composite materials may be exposed to environmental (thermal or hygral or both) condition during their service life. The effect of environmental condition is usually adverse from the point of view of design of composite structures. In the present research study the effect of hygrothermal condition on the design of laminated composite structures is investigated. The active fiber composite (AFC) which may be utilized as actuator or sensor is considered in the present analysis. The sensor layer is used to sense the level of response of the composite structures. The sensed voltage is fed back to the actuator through the controller. In this study both displacement and velocity feedback controllers are employed to reduce the response of the composite laminate within acceptable limit. The Newmark direct time integration scheme is employed along with modal superposition method to improve the computational efficiency. It is observed from the numerical study that the laminated composite structures become weak in the presence of hygrothermal load. The response of the structure can be brought to the acceptable level once the AFC layer is activated through the feedback loop.

잔류 열 변형을 고려한 평판형 압전 복합재료 유니모프 작동기의 해석 (Analysis of a Plate-type Piezoelectric Composite Unimorph Actuator Considering Thermal Residual Deformation)

  • 구남서;우성충
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.409-419
    • /
    • 2006
  • The actuating performance of plate-type unimorph piezoelectric composite actuators having various stacking sequences was evaluated by three dimensional finite element analysis on the basis of thermal analogy model. Thermal residual stress distribution at each layer in an asymmetrically laminated plate with PZT ceramic layer and thermally induced dome height were predicted using classical laminated plate theory. Thermal analogy model was applied to a bimorph cantilever beam and LIPCA-C2 actuator in order to confirm its validity. Finite element analysis considering thermal residual deformation showed that the bending behavior of piezoelectric composite actuator subjected to electric loads was significantly different according to the stacking sequence, thickness of constituent PZT ceramic and boundary conditions. In particular, the increase of thickness of PZT ceramic led to the increase of the bending stiffness of piezoelectric composite actuator but it did not always lead to the decrease of actuation distance according to the stacking sequences of piezoelectric composite actuator. Therefore, it is noted that the actuating performance of unimorph piezoelectric composite actuator is rather affected by bending stiffness than actuation distance.

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa;Najafi, Mahsa
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1193-1214
    • /
    • 2016
  • In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory

  • Baseri, Vahid;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.883-919
    • /
    • 2016
  • In this research, buckling analysis of an embedded laminated composite plate is investigated. The elastic medium is simulated with spring constant of Winkler medium and shear layer. With considering higher order shear deformation theory (Reddy), the total potential energy of structure is calculated. Using Principle of Virtual Work, the constitutive equations are obtained. The analytical solution is performed in order to obtain the buckling loads. A detailed parametric study is conducted to elucidate the influences of the layer numbers, orientation angle of layers, geometrical parameters, elastic medium and type of load on the buckling load of the system. Results depict that the highest buckling load is related to the structure with angle-ply orientation type and with increasing the angle up to 45 degrees, the buckling load increases.

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

  • Youzera, Hadj;Ali, Abbache;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.91-104
    • /
    • 2022
  • The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.