• Title/Summary/Keyword: Laminated

Search Result 2,080, Processing Time 0.028 seconds

Physical and Mechanical Properties of Laminated Board from Betung Bamboo (Dendrocalamus asper)

  • Muhammad Navis ROFII;Michael Jose MAIRING;Tomy LISTYANTO;Ihak SUMARDI;Rudi HARTONO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.383-392
    • /
    • 2024
  • Laminated bamboo is an engineered bamboo technology to maintain its mechanical durability for both construction and furniture materials. This study was conducted to assess the properties of laminated bamboo made from Betung bamboo at different culm positions and laminate orientations. The materials used in this study were 4-year Betung bamboo (Dendrocalamus asper) obtained from a community forest in Yogyakarta and polyvinyl acetate resin as adhesive. Two factors were applied for this study, i.e., culm position (lower, middle, and upper) and laminate orientations (vertical and horizontal direction). To examine the mechanical properties, a static bending test and the hardness test were performed in accordance with ASTM D1037-99. Moisture content and density were determined in accordance with BS 373-1957. The results indicated that there was no interaction between the culm position and laminate orientation on the moisture content, density, static bending properties and hardness. The culm position affected the static bending and hardness, with the higher position of the culm resulting a greater strength. The laminate orientation also affected the strength of laminated bamboo, with the vertical direction resulting in higher strength than the horizontal.

Optimal design of laminated composite plates to maximise fundamental frequency using MFD method

  • Topal, Umut;Uzman, Umit
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.479-491
    • /
    • 2006
  • This paper deals with optimal fibre orientations of symmetrically laminated fibre reinforced composite structures for maximising the fundamental frequency of small-amplitude. A set of fiber orientation angles in the layers are considered as design variable. The Modified Feasible Direction method is used in order to obtain the optimal designs. The effects of number of layers, boundary conditions, laminate thicknesses, aspect ratios and in-plane loads on the optimal designs are studied.

Reliability Analysis of laminated Composite Panel using Response Surface Method (반응면 기법을 이용한 적층복합재료판의 신뢰성해석)

  • 방제성;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.187-190
    • /
    • 2001
  • Response surface method is applied to evaluate the reliability of laminated composite panels. Since the linear and nonlinear first-ply failure load are computed using deterministic finite element analysis, new probabilistic finite element analysis is not necessary. Tsai-Wu criterion is used to construct the limit state suface. Material properties, layer thickness and lamina strengths of laminated composite panel are treated as random design variables. feasibility and accuracy of current method is validated using Monte-Carlo method Which perform thousand times of finite element analysis directly.

  • PDF

Damped Vibrations of Axially-Stressed Laminated Beams using Zig-Zag Finite Element (축방향 하중을 받는 점탄성물질이 심어진 적층보의 지그재그요소를 이용한 진동해석)

  • 이덕규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.1-4
    • /
    • 2001
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss actors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effect of the axial tension and compression load on the frequencies and loss factors is discussed.

  • PDF

A Study on the Facture Behavior of Laminated Steel Composites at Low Temperature (層狀複合鋼材 의 低溫 破壞擧動 에 관한 硏究)

  • 신창균;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.130-137
    • /
    • 1983
  • Laminated steel composites are made from spring steel and mild steel by rolling process. Experiments for impact test are carried out and the fracture behavior of laminated steel composites are compared with that of homogeneous steel. Also, fracture models of laminate composites are analyzedby finite element method and the computed fracture stress is compared with experimental results.

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Piezothermoelastic solution for angle-ply laminated plate in cylindrical bending

  • Dube, G.P.;Upadhyay, M.M.;Dumir, P.C.;Kumar, S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.529-542
    • /
    • 1998
  • Generalised plane strain solution is presented for simply supported, angle-ply laminated hybrid plate under cylindrical bending. The arbitrary constants in the general solution of the governing differential equations are obtained from the boundary and interface conditions. The response of hybrid plates to sinusoidal loads is obtained to illustrate the effect of the thickness parameter and the ply-angle. The classical lamination theory and the first order shear deformation theory are also assessed.

Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells

  • Xiang, Song;Chen, Ying-Tao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.893-907
    • /
    • 2014
  • Meshless local collocation method produces much better conditioned matrices than meshless global collocation methods. In this paper, the meshless local collocation method based on thin plate spline radial basis function and first-order shear deformation theory are used to calculate the natural frequencies and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and efficiency of present method are demonstrated.

A Study on the Optimal Position Determination of Point Supports to Maximize Fundamental Natural Frequency of Plate (평판의 1차 고유진동수가 최대가 되는 점지지의 최적위치선정에 관한 연구)

  • Hong Do-Kwan;Kim Moon-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1165-1171
    • /
    • 2004
  • The free vibration analyses of the isotropic and CFRP laminated composite rectangular plates with point supports at the fix edge is performed by FEM. We showed optimal position and mode shape of point supports that maximized fundamental natural frequency of the isotropic and CFRP laminated composite rectangular plates by each aspect ratio and the number of point supports.

Buckling Analysis of Laminated Composite Plates (복합적층평판의 좌굴해석)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 1998
  • In this paper, the experimental and numerical results of buckling loads for laminated composite plates are compared. Using boundary conditions of buckling test are all fixed supports. Experiments were conducted for plates with fiber angles $ heta$=30$^{\circ}$, 45$^{\circ}$,60$^{\circ}$ and aspect ratio a/b=0.8. Experimental results were obtained from load-deflection curves of buckling test. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF