• Title/Summary/Keyword: Laminate plate

Search Result 166, Processing Time 0.029 seconds

Free vibration of laminated composite skew plates with central cutouts

  • Lee, Sang-Youl;Park, Taehyo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.587-603
    • /
    • 2009
  • We performed a free vibration analysis of skew composite laminates with or without cutout based on the high-order shear deformation plate theory (HSDT). The effects of skew angles and ply orientations on the natural frequencies for various boundary conditions are studied using a nonlinear high-order finite element program developed for this study. The numerical results are in good agreement with those reported by other investigators for simple test cases, and the new results reported in this paper show the interactions between the skew angle, layup sequence and cutout size on the free vibration of the laminate. The findings highlight the importance of skew angles when analyzing laminated composite skew plates with cutout or without cutout.

Failure Analysis on the Carbon/Epoxy Laminate Subjected to Low Velocity Impact (저속충격을 받는 Carbon/Epox 적층판의 손상 해석)

  • 이호철;이영신;김재훈;전제춘
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.98-101
    • /
    • 2000
  • Recently, composite material which has much excellent mechanical characteristics has been applied in many industries. However, it has a brittle characteristic under impact condition and its invisible characteristics of the damaged area has been the motivation of many engineers investigation. The modified failure criterion is implemented to predict the failure behavior of the composite plate subjected to low velocity impact using commercial finite element analysis code, ABAQUS-Ver. 5.8. The new criterion is in good agreement with experimental results and can predict the failure behavior of the composite plate subjected to low velocity impact more accurately.

  • PDF

The Effect on Neglecting the Longitudinal Moment Terms in a Composite Liminate Plate with Stacking Sequence and Fiber Orientation (적층형태 및 보강방향에 따른 복합적층판의 종방향 모멘트 무시효과)

  • Lee, Bong-hak;Lee, Jung-ho;Hong, Chang-Woo;Kim, Kyung-Jin
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.97-105
    • /
    • 1998
  • The most of the design engineers for construction has academic background of bachelors degree. Theories for advanced composite structures are too difficult for such engineers and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. Such plates behave as special orthotropic plates and simple formulas developed by the author can be used. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

  • PDF

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

  • Youzera, Hadj;Ali, Abbache;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.

Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance (방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구)

  • Ki Hyun Kim;Min Kyu Kim;Min Je Kim;Myung Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2023
  • Modern bulletproof armor must be light and have excellent penetration resistance to ensure the mobility and safety of soldiers and military vehicles. The ballistic performance of heterogeneous structures of laminated flat plates as bulletproof armor depends on the arrangement of constituent materials for the same weight. In this study, we analyze bulletproof performance according to the stacking sequence of laminated bulletproof armor composed of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam. A ballistic analysis was performed by colliding a 7.62 × 51 mm NATO cartridge's M80 bullet at a speed of 856 m/s with six lamination arrangements with constituent materials thicknesses of 5 mm and 6.5 mm. To evaluate the bulletproof performance, the residual speed and residual energy of the projectile that penetrated the heterogeneous laminated flat plates were measured. Simulation results confirmed that the laminated structure with a stacking sequence of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam had the best bulletproof performance for the same weight.

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Evaluation of Free-Edge Delamination in Composite Laminates (복합재 적층판의 자유단 층간분리의 평가)

  • 김인권;공창덕;방조혁
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • A simplified method for determining the three mode(I, II, III) components of the strain energy release rate of free-edge delaminations in composite laminates is proposed. The interlaminar stresses are evaluated using the interface moment and the interface shear forces which are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is analysed by using a generalized quasi-three dimensional classical laminated plate theory. The analysis provides closed-form expression for the three components of the strain energy release rate. The analyses are performed for composite laminates subjected to uniaxial tension, with free-edge delaminations located symmetrically and asymmetrically with respect to the laminate midplane. The analysis results agreed with a finite element solution using the virtual crack closure technique.

  • PDF

Thermal Stress Due to a Hot - Spot on the Laminated Plate in High Temperature Superconducting Fault Current Limiter (적층판으로 제작된 고온초전도 한류기에 발생한 국부적 열폭주 점에 대한 열응력 해석)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.705-712
    • /
    • 2003
  • Analysis for the thermal stress distribution in the laminated plates containing a hot-spot(local heating region) is performed. It is assumed that the local heating region induces only mechanical stress by the thermal expansion but effect of the thermal conduction is neglected. The region is regarded equivalent to a homogeneous inclusion expanding in a laminated medium. As an example, Au/YBCO/Al$_2$O$_3$laminate which is often employed for High Temperature Superconducting Fault Current Limiter(HTS FCL) has been analyzed. Effects of heat input, thickness of each layer and the got spot size upon the stress distribution in the hot-spot have been investigated. For a constant heat generation into the hot-spot, as the thickness of the Al$_2$O$_3$substrate increases, the stress in the YBCO layer is peculiarly oscillated, and the curvature of laminate has a maximum at a certain thickness of the Al$_2$O$_3$.

Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior (사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.

Analytical Determination of Out-of-Plane Thermo-elastic Properties for Laminated Composite Plate (복합재 라미네이트의 두께방향 열탄성 물성치 계산)

  • Kim, Kyung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2407-2414
    • /
    • 2015
  • This paper presents analytical expressions for the determination of out of plane thermo-elastic properties for conventional laminated composite plates. The approach follows that commonly accepted for in-plane properties. Results over a variety of lay-ups reveals that it is poor assumption to use transverse tape lamina properties to represent out of plane laminate properties for laminates with more than 10% plies oriented off-axis($90^{\circ}$) from uniaxial or for laminates with angle plies of $15^{\circ}$ or greater.