• Title/Summary/Keyword: Lamellar morphology

Search Result 46, Processing Time 0.02 seconds

Investigation of Nanostructures in Homopolymer and Copolymer Films by Surface Techniques

  • Kang, Minhwa;Lee, Jihye;Lee, Yeonhee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.276-276
    • /
    • 2013
  • Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Atomic Force Microscopy (AFM) are the useful instruments to measure nanostructures of material surfaces. Surface pattern formation in blending homopolymer and diblock copolymer films was investigated as a function of film thickness and annealing conditions. In this study, surface structures of blending homopolymer [deuterated polystyrene (Mn 20,000), poly (methyl methacrylate) (Mn 18,000)] and diblock copolymer [Poly (deuteratedstyrene(d8)-b-methyl methacrylate) (Mn 19,500-18,100)] films were observed. The AFM result indicated that the nanostructures and film thickness depended on temperature, concentration and solvent. TOF-SIMS depth profiling was obtained for the lamellar morphology of symmetric dPS-b-PMMA which is found to orient parallel to the surface of the substrate. Elemental and molecular depth profiles measured in the negative ion mode by a Cs+ primary ion beam demonstrate variations in hydrogen, deuterium, carbon, oxygen, hydrocarbons and deuterated hydrocarbons within the diblock copolymer according to the depth.

  • PDF

Solidification Characteristics of Al-Cu Polycrystalline Ribbons in Planar Flow Casting (PFC법에 있어서의 Al-Cu 다결정리본의 응고특성)

  • Lee, Kyung-Ku;Lee, Sang-Mok;Hong, Chun-Ryo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.408-415
    • /
    • 1995
  • Polycrystalline Al-Cu ribbons were produced by planar flow casting(PFC). Solidification behavior and microstructual changes of the ribbons have been investigated as a function of ribbon thickness and processing parameters. The solidification front velocity, V varies within the ribbon, decreasing with increasing the distance, S from the wheel-contact surface, as $V=17.6S^{-1}$. In Al-4.5wt%Cu alloy, rapid decrease in solidification velocity toward the free surface causes a change in solidification morphology from planar to cellular, and finally, to dendritic. The length and inclination of columnar grains solidified with planar front were related to the wheel velocity. The transition from particulate degenerate eutectic structure to regular lamellar eutectic structure was observed to be caused by a difference of the relative growth velocites of ${\alpha}-Al$ and ${\theta}$ during solidification in the Al-Cu eutectic alloy.

  • PDF

Synthesis and Characterization of the CdS Plateles Particles in Octylamine-water System

  • Dong-Sik Bae;Kyong-Sop Han;James H. Adair
    • The Korean Journal of Ceramics
    • /
    • v.7 no.2
    • /
    • pp.80-84
    • /
    • 2001
  • The anisotropic CdS platelets were synthesized in the lamellar bilayer phase region of the octylamine-water binary system. The influence of the synthesis conditions of the system components on morphology and size of the platelets was examined. Atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) studies have shown thickness and face size of the synthesized particles. Platelets with face sizes ranging from 50 to 250 nm and thickness from 10 to 30 nm have been synthesized at room temperature. In addition, HRTEM micrographs show that the synthesized platelets are poly crystal.

  • PDF

Spherulitic Morphologies of Poly(ethylene terephthalate), Poly(ethylene 2,6-naphthalate), and Their Blend

  • Lee, Jong-Kwan;Lee, Kwang-Hee;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.44-48
    • /
    • 2002
  • The supermolecular structures of poly(ethylene terephthalate) (PET), poly(ethylene 2,6-naphthalate) (PEN), and their blend were investigated with optical microscopy and small angle light scattering. With increasing the crystallization temperature, incomplete spherulitic texture was developed for the PET samples. At a high crystallization temperature of 220 $^{\circ}C$, the light scattering pattern represented a random collection of uncorrelated lamellae. The general morphological appearances for the PEN samples were similar to that of the PET. A notable feature was that the spherulites of the PEN formed at 200 $^{\circ}C$ showed regular concentric bands arising from a regular twist in the radiating lamellae. The spherulitic morphology of the PET/PEN blend was largely influenced by the changes of the sequence distribution in polymer chains determined by the level of transesterifcation. The increased sequential irregularity in the polymer chains via transesterification caused a morphological transition from a regular folded crystallite to a tilted lamellar crystallite.

Effect of Sr Substitution for RE on Microstructure and Tensile Properties in Mg-Al-RE Casting Alloys

  • Jun, Joong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.284-287
    • /
    • 2011
  • Microstructures and tensile properties at ambient and elevated temperatures were studied by substituting RE for Sr in Mg-6%Al-(3-X)%RE-X%Sr alloys (X = 0~3). With increasing Sr content, $Al_4Sr$ phase with lamellar morphology was newly introduced at interdendritic regions, with a gradual extinction of needle-shaped $Al_4RE$. The Mg-6%Al-3%Sr alloy shows dendritic grains and interdendritic eutectic phases containing bulky Mg-Al-Sr and lamellar $Al_4Sr$ with more continuous manner. The substitution of Sr for RE provided higher YS, UTS and creep resistance at $175^{\circ}C$, which indicates that Sr would be more beneficial in tensile properties and creep resistance at elevated temperature than RE for the Mg-Al based casting alloys.

Morphology and phytogeography of Laminaria appressirhiza and L. inclinatorhiza (Phaeophyceae) from the Sea of Okhotsk

  • Klochkova, Tatyana A.;Kim, Gwang-Hoon;Belij, Mihail N.;Klochkova, Nina G.
    • ALGAE
    • /
    • v.27 no.3
    • /
    • pp.139-153
    • /
    • 2012
  • The re-examination of morphological and anatomical characters of Laminaria appressirhiza and L. inclinatorhiza collected from different localities in the Sea of Okhotsk was performed. Despite their commercial and ecological importance to the region they have not been comprehensively reviewed since their first description in 1970. Our results show that some original diagnostic key characters (e.g., shape of holdfast, shape of sporangial sori, and dissection of blade) are not stable and have deviations from the type morphology when plants grow in different environments. In L. inclinatorhiza, the sporangial sori development occurred differently to the pattern indicated in original species description as they did not develop simultaneously on both sides of the blade. Instead, the sporangial sori outlines on both sides of the blade did not coincide at first and only became coincident later. Also, a deep-water population of L. inclinatorhiza with an unusual and interesting morphology, growing at depths of 15-25 m on opened rocky coasts in Taujskaya Bay (northern part of the Sea of Okhotsk) was found. The stable diagnostic key characters to distinguish these two species are the cone-like, multilayered, very thick and massive holdfast (in L. inclinatorhiza) and rolled margins of blades, lamellar rosette-like part of thallus, and sporangial sori developing only on one side of the blade (in L. appressirhiza). The ecological characteristics, distribution, and abundance of both species in the Sea of Okhotsk are discussed. Both species are perennial and widely distributed in the region. L. appressirhiza is more often found as a subdominant species among other kelps, forming maximum biomass and density of 7-9 kg and 8-25 plants per $1m^2$, respectively. L. inclinatorhiza sometimes forms local mono-species communities with maximum biomass and density of 10-12 kg and 10-15 plants per $1m^2$, respectively.

A New Sample Preparation Technique for SEM Observation of Polyolefin Microstructure (주사전자현미경상에서의 고분자 미세구조 관찰)

  • Park, Je-Myung
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.405-415
    • /
    • 1999
  • In general, transmission electron microscopy (TEM) is usually used in the investigation of polymer microstructure. Microtoming, solution casting, staining and carbon replica method are frequently introduced to the study of the polymer morphology with TEM, however the sample preparation procedure of those techniques is very difficult, and it takes a long time. The purpose of this study is to develop a new sample preparation technique which is suitable for the investigation of the various shapes and species of polyolefin microstructure by scanning electron microscopy (SEM). By modifying the conventional chemical etching method, we developed a new chemical etching technique and sample preparation procedure that are suitable for SEM study of polymer microstructure. In this study the permanganate etching method is introduced and the optimum etching condition are determined by simply adjusting the etchant formulation, concentration and etching time. This technique has shown good reproducibility and it's morphological results agree well with other works on various types of microstructures such as spherulite characterization of isotatic polypropylene $(\alpha/\beta)$, polyethylene and poly-propylene copolymer characterization, and the study of lamellar growth pattern of unsheared or oriented materials. This technique has also been applied to the industrial fields for characterization of the polyolefin film, automobile products and the others.

  • PDF

Occurrence of Nuclear Inclusions in Plant Cells (식물세포 내 핵 함유구조 발달 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.229-234
    • /
    • 2011
  • The occurrence of nuclear inclusions has been reported in various plant groups from primitive ferns to higher flowering plants. Their presence within a group seems to be randomly distributed without any phylogenetic relationships among species. According to the current survey, nuclear inclusions have been widely documented in more than several hundreds of species from various families of plants. The morphology and internal structures of nuclear inclusions are diverse and at least five types of inclusions develop within plant nuclei; amorphous, crystalline, fibrous, lamellar, and tubular form. Among these types, crystalline inclusions are the ones that are the most frequently reported. The inclusions are not bound by membranes and appear to be related to the nucleoli, either spatially by a close association or by an inverse relationship in size during development. The idea that nuclear inclusions are of a proteinaceous nature has been widely accepted. Further link to nucleolar activity as a protein storing site has also been suggested based on the association between the nucleolus and nuclear inclusions. Various investigations of nuclear inclusions have revealed more information about their structural features, but characterizing their precise function and subunit complexity employing molecular analysis and 3-D reconstruction remains to be elucidated. Tilting and tomography of serial sections with appropriate image processing can provide valuable information on their subunit(s). The present review summarizes discussion about different nuclear inclusions in plants from previous works, giving special attention to their fine, ultrastructural morphology, function, and origin.

Development of Lamella Morphology in Poly(ethylene terephthalate)/Polycarbonate Blends

  • Lee, Jong-Kwan;Im, Jeong-Eon;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.172-177
    • /
    • 2004
  • We have studied the lamella-level morphology of poly(ethylene terephthalate) (PET)/polycarbonate (PC) blends using small-angle X-ray scattering (SAXS). Measurements were made as a function of the holding time in the melt. We determined the morphological parameters at the lamellar level by correlation function analysis of the SAXS data. An increased amorphous layer thickness was identified in the blend, indicating that some PC was incorporated into the interlamellar regions of PET during crystallization. The blend also exhibits a larger lamella crystalline thickness (l$\sub$c/) than that of pure PET. A possible reason for the increase in l$\sub$c/ is that the inclusion of the PC molecules in the interlamellar regions causes an increase in the surface free energy of folding. At the early stage of isothermal crystallization, we observed a rapid drop in the value of l$\sub$c/ in the blend; this finding indicates that a relatively large fraction of secondary crystals form during the primary crystallization. In contrast, the value of l$\sub$c/ for the sample that underwent a prolonged holding time increased with time in the secondary crystallization-dominant regime; this observation suggests that the disruption of chain periodicity, which results from transesterification between the two polymers, favors the development of fringed micellar crystals that have larger values of l$\sub$c/ rather than the development of normal chain-folded crystals.

The Effect of Microstructure and Temperature on Fatigue Crack Propagation in Ti-3A1-2.5V A11oy (Ti-3A1-2.5V 합금의 피로균열전파특성에 미치는 미세조직 및 온도의 영향)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.58-66
    • /
    • 1997
  • Ti alloys, with the advantageous tensile strength/density ratio and the chemical stability, have been used widely in the aerospace and chemical engineering industries and their usages are still expanding in various industrial areas. In the automotive industry, because of their superior merits of weight reduction and fuel saving, Ti alloys are expected to be used as various part materials including connecting rods, engine valves, springs and retainers, which are all subjected to the fatigue loads. In this study, using Ti-3A1-2.5V, the effects of temperature and microstructure change on fatigue crack propagation has been investigated. Five different microstructures were tested at the temperatures of room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency 20Hz. Some of the conclusions obtained are as follows: (1)Microstructurally, the morphology of less $\alpha$-phase and finer lamellar structure of $\alpha$ and $\beta$-Ti showed better registance to the fatigue crack propagation. (2)Fatigue crack growth rate increased with test temperature.

  • PDF