• Title/Summary/Keyword: Lake-effect

Search Result 272, Processing Time 0.029 seconds

Estimation of the Forestry Area Decrease Effect on the Soil Erosion in Rural Watershed (농촌유역의 산림지 면적 감소에 따른 유역 토양유실량 변화 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Park, Seung-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.1 s.22
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, forestry area change effect on the soil erosion in Asan lake watershed was estimated. Temporal variations of land use in the study watershed were analyzed from Landsat-5 TM remote sensing images. Geographic Information System (GIS) combined with Universal Soil Loss Equation (USLE) was used to estimate the soil erosion of Asan lake watershed. Spatial data for each USLE factors was obtained from the Landsat-5 TM remote sensing images and 1/25,000 scale digital contour maps. Sediment yield to Asan lake was estimated by sediment delivery ratio and sediment accumulation in lake was estimated by trap efficiency. The estimation methods were validated for sediment accumulation in Asan lake. From the hydrographic survey from 1974 to 2003 for Asan lake, sediment accumulation was measured. The estimated accumulation sediment of 303,569ton/yr showed similar value with observed of 295,888ton/yr. From the validated estimation methods, the increasing amount of soil erosion when 1% of forest area in Asan lake watershed decreases was calculated from 12.91 to 1482.05ton/yr.

Water Quality Behavior by the Sluice Gate Operation of Freshwater Lake (배수갑문 방류시점 및 방류량에 따른 담수호의 수질변화)

  • 김선주;김성준;김필식;이창형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.91-101
    • /
    • 2003
  • Boryeong Seadike located at southwestern seashore of Korean peninsula completed in 1997. Sluice gate operation can be an important factor to maintain lake water quality and reduce retaining time of pollutants within lake. The lake water quality simulation model, WASPS was adopted and tested to find out proper gate operation timing and discharge amount. From the simulation of sluice gate operation, the results showed that the later the time of discharge for loosing 1 day successively to 6 days, the better the quality of water. Discharge amount showed relatively minor changes of water quality. This means that pollutants flowed into lake from watershed do not have enough time to mix up with deep water when the gate opened at early time. About 3 days delay of discharge caused the dilution effect to stabilize the lake water quality in case of Boryeong freshwater lake.

Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake (바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향)

  • Chung, Se-Woong;Schladow, S.G.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF

Change of Heavy Metals and Sediment Facies in Surface Sediments of the Shihwa Lake (시화호 표층퇴적물의 중금속 및 퇴적상 변화)

  • 최만식;천종화;우한준;이희일
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • In order to determine the changes of sediment facies and metal levels in surface sediments after the construction of Shiwha Lake, surface sediments were sampled at 8 sites located on the main channel monthly from June, 1995 to August, 1996 and analysed for 12 metals (Al, Fe, Mn, V, Cr, Co, Ni, Cu, Zn, Cd, As and Pb) by ICP/AES and ICP/MS. Two groups of sampling sites(the inner lake with 3 sites and the outer lake with 5 sites) are subdivided by the surface morphology ; the inner lake is a shallow channel area with a gentle slope, while the outer lake is relatively deep and wide channel with a steep slope which has many small distributaries. After the construction of dam, fine terrestrial materials were deposited near the outer lake, which resulted in the change of major sediment facies from sandy silt to mud. With the deposition of fine sediments in the outer lake, anoxic water column induced the formation of sulfide compounds with Cu, Cd, Zn and part of Pb. Metal (Cr, Ni, Cu, Zn and Cd) contents in sediments increased up to twice within 2 years after the construction of dam. This is due to the direct input of industrial and municipal wastes into the lake and the accumulation of metals within the lake. In addition, frequent resuspension of contaminated sediments in a shallow part of the lake may make metal-enriched materials transport near the outer lake with fine terrestrial materials. As the enrichment of Cu, Zn, Cd and part of Pb in the Shiwha Lake may be related to the formation of unstable sulfide compounds by sulfate reduction in anoxic water or sediment column, the effect of mixing with open coastal seawater is discussed.

  • PDF

A change of local meteorological environment according to dam construction of Nakdong-River -II. Estimation using numerical model- (낙동강 수계 중의 댐 건설에 의한 주변의 국지기상환경 변화 -II. 수치모델을 이용한 추정-)

  • 전병일;이영미
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.281-288
    • /
    • 2002
  • This study was carried out for reading the change of local meteorological environment according to dam construction of Nakdong-river using numerical model. The study used PSU/NCAR Mesoscale Model version5(MM5) for inquiring effect of formation of artificial lake after dam construction. The colleague simulated temperature mixing ratio, latent heat flux and sensible heat flux in two cause of existing lake and not. Temperature and mixing ratio in southwest of Andong lake increased because of the air that was warm and moist above the lake moved to southwest due to the northeasterly wind. In the case of existing lake around Andong, latent heat flux increased much in the daytime after sunrise. However, sensible heat flux decreased but it didn't change distinctly in southwest of Andong like the other values.

Coupled Operation of the Lake Youngsan and Yeongam for the Flood Control in the Downstream of the Youngsan River (영산강 하류부 홍수조절을 위한 영산호-영암호 연계운영 방안)

  • Kim, Dae Geun;Lee, Jae Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.297-306
    • /
    • 2008
  • In order to determine the effects of lock gate expansion at the Lake Youngsan and Yeongam as well as increase in the width of the connecting channel of the two lakes on flood control downstream of the Youngsan River, an unsteady hydraulic flood routing was conducted by combining the Lake Youngsan and Yeongam as a single connected system. The coupled operation of the two lakes was found to have little effect when the widths of the lock gates and the connecting channel are set at the current level. It was also found that increasing the width of the connecting channel as well as the lock gate of the Lake Yeongam is an effective means of reducing the stage of the Lake Youngsan, whereas an increase in the width of the Lake Youngsan's lock gate had a relatively smaller effect. The extended width of the connecting channel leads to a rise in the stage of the Lake Yeongam. In order to reduce the elevated stage, The Lake Yeongam's lock gate must be expanded along with the Lake Yeongsan's lock gate. The analysis found that the stage of the Lake Yeongsan can be effectively controlled through adjustment of opening and shutting criteria of the connecting channel's lock gate, when diversion discharge between the lakes is increased as a result of expanding the width of the connecting channel.

The Effect of Rainfall on the Water Quality of a Small Reservoir (Lake Wangkung, Korea)

  • Hwang, Gil-Son;Kim, Jae-Ok;Kim, Jai-Ku;Kim, Young-Chul;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.39-43
    • /
    • 2005
  • The dynamics of water quality with the storm events were analyzed in a small reservoir for irrigation, Lake Wangkung. Water quality of the inflowing stream fluctuated seasonally with the variation of flow rate. Thermal stratification was consistent from April to October below 2 m depths and anoxic layer was developed below 2 m depth in summer. The unique feature of temperature showed that thermal stratification was disrupted by a heavy rain event during monsoon, but hypolimnetic hypoxia were reestablished after a few days. Phosphorus and nitrogen increased immediately following storm events. The marked increase may be due to the input of P-rich storm runoff from the watershed. Internal phosphorus loading can be one of the explanations for TP increases in summer. When there was a storm, total populations of phytoplankton and zooplankton was reduced immediately following the storm, indicating possible flushing of algae and zooplankton. After a lag period of low-density the plankton population bloomed to a peak again within five days after the storm. Turbid water in lake became clear again which coincided with the time of the phytoplankton buildup. The results demonstrate that water quality is regulated greatly by rainfall intensity in Lake Wangkung.

Lake Water Quality Modelling Considering Rainfall-Runoff Pollution Loads (강우유출오염부하를 고려한 호수수질모델링)

  • Cho, Jae-Heon;Kang, Sung-Hyo
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • Water quality of the Lake Youngrang in the Sokcho City is eutrophic. Jangcheon is the largest inflow source to the lake. Major pollutant sources are stormwater runoff from resort areas and various land uses in the Jangcheon watershed. A storm sewer on the southern end of the lake is also an important pollution source. In this study, water quality modelling for Lake Youngrang was carried out considering the rainfall-runoff pollution loads from the watershed. The rainfall-runoff curves and the rainfall-runoff pollutant load curves were derived from the rainfall-runoff survey data during the recent 4 years. The rainfall-runoff pollution loads and flow from the Jangcheon watershed and the storm sewer were estimated using the two kinds of curves, and they were used as the flow and the boundary data of the WASP model. With the measured water quality data of the year 2005 and 2006, WASP model was calibrated. Non-point pollution control measures such as wet pond and infiltration trench were considered as the alternative for water quality management of the lake. The predicted water quality were compared with those under the present condition, and the improvement effect of the lake water quality were analyzed.

Assessment of Water Quality Impact of Submerged Lakeside Macrophyte (저수지 주변 식물의 침수시 수질 영향)

  • Lee, Yo-Sang;Park, Jong-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.255-262
    • /
    • 2005
  • In summer and early autumn, eutrophication occurs occasionally in many reservoirs. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during water surface is rising after rainy season. This study include examination of pollutant load, species of plant, community structure and productivity of macrophyte in unit area at lakeside. The result of this research will be used as a guideline of water quality management on reservoir through assessing water quality effect of submerged plant. The areal distribution, composition of species and submerged area of macrophyte changes according to rainfall pattern every year, so it is difficult to calculate nutrient load annually from submerged macrophyte. In this study, the nutrient load from submerged macrophyte assess from Daecheong and Juam reservoir in 2001. TN and TP load of submerged macrophyte shows 0.043% and 0.069%, respectively, of annual discharge load on Daecheong watershed. At lake Juam, TN and TP shows 0.64% and 1.28% load, respectively. The reason that nutrient load of lake Juam is greater than that of lake Daecheong is that macrophyte distribution area of lake Juam is 5 times greater than that of lake Daecheong. Total nutrient load of lake Daecheong is 3 times greater than that of lake Juam.

Implications from the Sihwaho Policy at the System Dynamics Perspective (시스템다이내믹스 관점에서 본 시화호 정책실패의 교훈)

  • Lee, Mi-Soo;Kim, Doa-Hoon
    • Korean System Dynamics Review
    • /
    • v.6 no.1
    • /
    • pp.125-145
    • /
    • 2005
  • The Sihwaho Project got off to a bad start, which led to a series of mishaps and an imbalance of the whole project. The purpose of this study is to select the case of Sihwaho as a research subject, clean up the contamination caused by the ill planned project, develop suitable measures to stabilize the lake environment, and find the implications of similar development projects. For this, the authorshave conducted three simulations after studying the structural reasons for the failure of the Sihwaho Policy by identifying cause and effect relationships, pre-testing a number of policy measures for the current lake project, and presenting measures for solving the contamination problem at the lake. The simulations have shown us that filling the lake with seawater is inadequate to solve the problem and that we also have to make efforts to reduce the volume of wastes to the lake as well. The authorshave also analyzed the degree of difference between the simulation and survey results for scenario 1, in which we have studied how much seawater can reduce the contamination of the Sihwaho Lake without the effort to reduce the volume of wastes into the lake. The survey showed that most citizens and employees of the Ministry of Environment did not think it would be serious as the simulation results pointed out, and the employees of the Ministry of Environment were more optimistic about the situation than the public.

  • PDF