• Title/Summary/Keyword: Lake Yongdam

Search Result 12, Processing Time 0.024 seconds

Study on the Feeding Habits of Micropterus salmoides in Lake Okjeong and Lake Yongdam, Korea (옥정호와 용담호에 서식하는 배스 Micropterus salmoides의 먹이생물 차이에 관한 연구)

  • Lee, Wan-Ok;Yang, Hyun;Yoon, Seung-Woon;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.21 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • The feeding habits of Micropterus salmoides were investigated and two lakes, Lake Okjeong and Lake Yongdam, between March 2007 and March 2009. In Lake Okjeong, M. salmoides was likely introduced almost 20 years ago and in Lake Yongdam was less than 10 years ago. Food contents in M. salmoides from each lakes showed a significant difference in Index of Relative Importance (IRI) value. Fishes was most important prey item in Lake Okjeong whereas decapoda in Lake Yongdam. The difference in IRI of the Decapoda means that their abundance of this prey item in Lake Yongdam is higher than in Lake Okjeong. These decrease of the Decapoda in the lake may be caused by the feeding of M. salmoides. In Lake Yongdam the proportion of the Decapoda in the food of M. salmoides decreased during the study period, while the fishes increased from 2007 to 2008, suggesting related relationship to the feeding activity of M. salmoides as was seen in Lake Okjeong.

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Water Quality Modelling of Daechung Lake - Effect of Yongdam Dam (용담댐의 영향분석을 위한 대청호 수질모델링)

  • Seo, Dong-Il;Lee, Eun-Hyoung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.737-751
    • /
    • 2002
  • Water quality in Daechung Lake was predicted for various discharge conditions of Yongdam dam. The same scenarios were applied as in the previous paper by the authors for Keum River water quality modeling. Effects in water quality due to changes in discharge conditions from Yongdam Dam were less distinct to the Daechung Lake than to the inflowing Keum River due to sink processes in the lake. For the minimum flow year, it is appropriate to maintain Yongdam dam discharge rate to 8.9 $m^3$/sec considering the current field conditions and future predictions of TN and TP concentrations of Yongdam dam. Effect of Yongdam dam discharge conditions to the Daechung Lake water quality were stronger for drier years. However it should be noted that the effects were dependent upon the water quality of Yongdam discharge at the same time. Therefore, water quality management effort should be emphasized before the discussion over the discharge volume of Yongdam dam. The input data sets for simulations in this study were formulated using the available data and assumptions based on authors experiences for the fields. Therefore, continued data collection effort will ensure the validity of this study.

Bloom-forming Cyanobacteria in Yongdam Lake (1) Nutrient limitation in a Laboratory Strain of a Nitrogen-fixing Cyanobacterium, Anabaena spiroides v. crassa (용담호 녹조현상의 원인 남세균 연구 (1) 질소고정 남세균 Anabaena spiroides v. crassa 종주와 영양염 제한)

  • Park, Jong-Woo;Kim, Young-Geel;Heo, Woo-Myung;Kim, Bom-Chul;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2006
  • Yongdam Lake is the fifth largest artificial lake in Korea newly formed by the first impounding the Yongdam Multi-purpose Dam on December, 2002. Yongdam Lake, with her total water storage of 820 million M/T, is located at the roof-top region of the streams flowing into the just-constructed new Saemankeum Lake. Seasonal succession of phytoplakton in Yongdam Lake might affect cyanobacterial blooms in Saemankeum Lake by inoculating seasonal dominants. During 2002-2003 when the first impounding after the construction of Yongdam Multi-purpose Dam was still undergoing, summer cyanobacterial blooms by Anabaena, Microcystis, and Aphanizomenon were observed. Among these three, filamentous Anabaena is well known to have its species with $N_2-fixing$ ability and special cells such as heterocysts and akinetes as well as the vegetative cells. We established a clonal culture of Anabaena spiroides v. crasse (KNU-YD0310) from the live water samples collected at the bloom site of Yongdam Lake. The N- and P-nutrient requirement of the KNU-YD0310 was explored by the experimental cultivation of the laboratory strain. Ratio of heterocysts to vegetative cells increased as N-deficiency extended with its maximum at $N_2-fixing$ condition. The strain KNU-YD0310 exhibited considerable growth under N-limiting conditions while its growth was proportional to the initial phosphate-P concentration under P-deficient conditions. Under P-limiting conditions akinete density increased, which could be interpreted as an adaptation strategy to survive severe environment by transforming into resting stage. The above eco-physiological characteristics of Anabaena spiroides v. crassa might be useful as an ecological criterion in controlling cyanobacterial blooms at Shaemankeum Lake in near future.

Application of EFDC and WASP7 in Series for Water Quality Modeling of the Yongdam Lake, Korea

  • Seo, Dong-Il;Kim, Min-Ae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.439-447
    • /
    • 2011
  • This study aims to test the feasibility of combined use of EFDC (Environmental Fluid Dynamics Code) hydrodynamic model and WASP7.3 (Water Quality Analysis Program) model to improve accuracy of water quality predictions of the Yongdam Lake, Korea. The orthogonal curvilinear grid system was used for EFDC model to represent riverine shape of the study area. Relationship between volume, surface and elevation results were checked to verify if the grid system represents morphology of the lake properly. Monthly average boundary water quality conditions were estimated using the monthly monitored water quality data from Korean Ministry of Environment DB system. Monthly tributary flow rates were back-routed using dam discharge data and allocated in proportion to each basin area as direct measurements were not available. The optimum number of grid system was determined to be 372 horizontal cells and 10 vertical layers of the site for 1 year simulation of hydrodynamics and water quality out of iterative trials. Monthly observed BOD, TN, TP and Chl-a concentrations inside the lake were used for calibration of WASP7.3 model. This study shows that EFDC and WASP can be used in series successfully to improve accuracy in water quality modeling. However, it was observed that the amount of data to develop inflow water quality and flow rate boundary conditions and water quality data inside lake for calibration were not enough for accurate modeling. It is suggested that object-oriented data collection systems would be necessary to ensure accuracy of EFDC-WASP model application and thus for efficient lake water quality management strategy development.

Water Quality Modelling of the Keum River - Effect of Yongdam Dam (용담댐의 영향분석을 위한 금강의 수질모델링)

  • Lee, Eun-Hyung;Seo, Dong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.525-539
    • /
    • 2002
  • Effects of Yongdam Dam discharge conditions on water quality of the Keum River and Daechung Lake inflow were analyzed for various scenarios using WASP5 water quality model. Three different groups of scenarios were tested: 1) Two different weather conditions; the lowest flow year and the highest flow year since the beginning of Daechung Dam operation in 1981, 2) Fine discharge flow rates; 5.4, 8.9, 12.4, 16.4 ㎥/s and field observed flow during the study period, 3) Three conditions of discharge water quality; first grade, second grade by Korean water quality standard and field observed water quality. Effect of changes in Yongdam Dam discharges was greater for dry year. The increase of discharge from the Yongdam Dam will improve water quality of downstream areas only when the water quality of the discharge is equal or better than that of downstream areas. Field observed water qualify data show that BOD concentrations are lower than first grade level but TN and TP concentrations are exceeding 5th and 3rd grade level in Korean standard, respectively. Considering that nutrient control methods in watershed areas of Yongdam dam are limited, it is expected that nutrient concentrations from Yongdam Dam discharge will be higher than 2nd grade water quality standard level. Therefore, it would be important to develop practical management strategies in the watershed area of Yongdam Dam based on field conditions for conservation of water quality in downstream areas.

Assessment of Water Quality Management System Application on Yongdam Reservoir (용담댐 저수지 수질관리시스템 적용성 평가)

  • Lee, Yo-Sang;Koh, Deuk-Koo;Yi, Hye-Suk;Jeong, Seon-A
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.4
    • /
    • pp.235-242
    • /
    • 2008
  • To develop a watershed management plan for protection of the lake water quality, the linkages among land use activities, stream water quality, and lake water quality must be understood. This study conducted to develop a Decision Support System(DSS) for the reservoir water quality managers and a comprehensive watershed management plan. This DSS has three main components; database, interactive decision model, and data delivery interface system. Graphic User Interface(GUI) was developed as the interface medium to deliver the data and modeling results to the end users. Water quality management scenarios in Yongdam reservoir consist of two parts. One is the watershed management, and the other is water quality management in the reservoir. The watershed management scenarios that were evaluated include as follows : a removal of point sources, control of waste water treatment plant, reductions in nonpoint sources, and the management of developed land. Water quality management scenarios in the reservoir include to install a curtain wall and to operate an algae removal system. The results from the scenario analysis indicate that the strategy of the reservoir water quality management can promise the best effectiveness to conserve the quality of reservoir water. It is expected that many local agencies can use this DSS to analyze the impact of landuse changes and activities on the reservoir watershed and can benefit from making watershed management decisions.

Phosphorus and Suspended Solid Loading in Lake Yongdam (용담호 소유역별 인 및 부유물질 유입부하량 산정)

  • Kwon, Sang-Yong;Kim, Young-Geel;Yih, Won-Ho;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.322-333
    • /
    • 2005
  • Total phosphorus (TP) and suspended solids (SS) were measured in the discharge waters from 5 drainage basins of Lake Yongdam, from April, 2002 till March, 2004. The responses of SS and TP to rainfall were analyzed and their loadings into Lake Yongdam were calculated. The inflowing rivers into Lake Yongdam were the Juja River, the Jeongja River, the Jinan River, the Geum River and the Guryang River. Among these rivers Jinan River showed the highest TP that fluctuated very much according to the flow rate. TP and the flow rates (Q) of each river showed positive correlations with empirical relationsip of $TP\;=\;6.32Q^{0.30}$ for the Juia River, $TP\;=\;8.58Q^{0.49}$ for the Jeongia River, $TP\;=\;307.92Q^{0.10}$, for the Jinan River, $TP\;=\;17.91Q^{0.47}$, for the Geum River, $TP\;=\;20.11Q^{0.53}$ for Guryang River. In April 2002 ${\sim}$ March 2003, phosphorus loadings from the Juja River, the Jeongja River, the Jinan River, the Geum River and the Guryang River were calculated to be 3,677, 11,430, 36,412, 89,651, and 42,226 kgP ${\cdot}$ $yr^{-1}$ respectively. And the specific loadings from the Juja River, the Jeongia River, the Jinan River, the Geum River and the Guryang River were calculated to be 0.3, 2.9, 13.6, 9.3, and 13.0 kgP ${\cdot}$ $km^{-2}$ ${\cdot}$ $yr^{-1}$ respectively. In April 2002 ${\sim}$ March 2004, the suspended particles loading from the Juja River, the Jeongia River, the Jinan River, the Geum River and the Guryang River were 673, 1,232, 4,232, 30,902, 80,202 ton ${\cdot}$ $yr^{-1}$ respectively. The Guryang River showed the largest contribution of SS loading.

Relationship among Inflow Volume, Water Quality and Algal Growth in the Daecheong Lake (대청호 유입유량 변동과 수질 및 조류증식의 관계)

  • Cheon, Se-Uk;Lee, Jea-An;Lee, Jay J.;Yoo, Yung-Bok;Bang, Kyu-Chul;Lee, Yeoul-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.342-348
    • /
    • 2006
  • Changes in water quality and algal growth according to the differences in the inflow volume were investigated in the Daecheong Lake from 1998 to 2001. Until year 2000, inflow volume considerably depended on the rainfall throughout the basin. However, the correlation was low since 2001 when water storage in the upstream Yongdam Lake was started. According to inflow volume-TP relationship analyses, significant correlation was found at up- and middle-stream sites, excluding down-stream site of the Daechong Lake. For chlorophyll-a, correlation was found with flow volume at all sites except for Choo-So. In a dry year, although nutrients loads were relatively lower than those in rainy years, there were higher concentrations of chlorophyll-a and massive bloom of Microcystis. Limiting factors for algal growth seems to be not the volume of nutrients load but retention time and physical disturbance of the water body influenced by inflow volume. Thus, in the Daecheong lake, it would be more important to focus on the management of eutrophication in dry years than in rainy ones.

A Study on Measuring the Similarity Among Sampling Sites in Lake Yongdam with Water Quality Data Using Multivariate Techniques (다변량기법을 활용한 용담호 수질측정지점 유사성 연구)

  • Lee, Yosang;Kwon, Sehyug
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2009
  • Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data and understand the characteristics of classified clusters have been discussed for the optimal water quality monitering network. For empirical study, data of two years (2005, 2006) at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in Yongdam reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.