• Title/Summary/Keyword: Lagrangian particle tracking model

Search Result 35, Processing Time 0.026 seconds

Study On Lagrangian Heat Source Tracking Method for Urban Thermal Environment Simulations (도시 열환경 시뮬레이션을 위한 라그랑지안 열원 역추적 기법의 연구)

  • Kim, Seogcheol;Lee, Joosung;Yun, Jeongim;Kang, Jonghwa;Kim, Wansoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.583-592
    • /
    • 2017
  • A method is proposed for locating the heat sources from temperature observations, and its applicability is investigated for urban thermal environment simulations. A Lagrangian particle dispersion model, which is originally built for simulating the pollutants spread in the air, is exploited to identify the heat sources by transporting the Lagrangian heat particles backwards in time. The urban wind fields are estimated using a diagnostic meteorological model incorporating the morphological model for the urban canopy. The proposed method is tested for the horizontally homogeneous urban boundary layer problems. The effects of the turbulence levels and the computational time on the simulation are investigated.

Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea

  • Kwon, Kyungman;Choi, Byoung-Ju;Kim, Kwang Young;Kim, Keunyong
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.315-326
    • /
    • 2019
  • Northeastward drifts of massive Sargassum patches were observed in the East China Sea (ECS) and Yellow Sea (YS) by the Geostationary Ocean Color Imager (GOCI) in May 2017. Coverage of the brown macroalgae patches was the largest ever recorded in the ECS and YS. Three-dimensional circulation modeling and Lagrangian particle tracking simulations were conducted to reproduce drifting trajectories of the macroalgae patches. The trajectories of the macroalgae patches were controlled by winds as well as surface currents. A windage (leeway) factor of 1% was chosen based on sensitivity simulations. Southerly winds in May 2017 contributed to farther northward intrusion of the brown macroalgae into the YS. Although satellite observation and numerical modeling have their own limitations and associated uncertainties, the two methods can be combined to find the best estimate of Sargassum patch trajectories. When satellites were unable to capture all patches because of clouds and sea fog in the ECS and YS, the Lagrangian particle tracking model helped to track and restore the missing patches in satellite images. This study suggests that satellite monitoring and numerical modeling are complementary to ensure accurate tracking of macroalgae patches in the ECS and YS.

Thermal Dispersion Analysis Using Semi-Active Particle Tracking in Near Field Combined with Two-Dimensional Eulerian-Lagrangian Far Field Model (근역에서 부력입자추적모형을 적용한 Eulerian-Lagrangian 결합에 의한 온수확산)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.73-82
    • /
    • 1998
  • In order to simulate surface discharged heat dispersion in costal area, a 2-dimensional Eulerian-Lagrangian model for far field and semi-active particle tracking random walk model in near field has been combined. The mass of discharged heat water in near field has treated as particles with buoyancy and this is eventually converted to horizontal additive dispersion in random walk equations. This model is applied to both a simplified coastal geometry and a real site. In simple application it can simulate plume-like characteristics around discharging point than a near field-model, CORMIX/3. Actual application in the Chonsu Bay shows farther spreading of heat water in near field comparing the observed data, and this shows that the developed model might be applied with satisfaction.

  • PDF

The Application of Lagrangian Particle-Tracking Method to Modelling of Oil-Spill Dispersion (라그랑지안 입자추적법에 의한 유출유 확산모델링)

  • 정연철
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.73-83
    • /
    • 1997
  • To predict the oil-spill dispersion in marine waters, the oil-spill dispersion model based on Lagrangian particle-tracking method was developed and applied to Kwangyang and Jinju Bay. The tidal current movements to be required as input data of the oil-spill dispersion model were obtained by a two-dimensional numerical tidal model. Evaluation of tidal current movements using mean tide was successful. Modelling results were compared with the field data obtained at spill site. There were some descrepancies between modeling results and field data. However, the general pattern of modelling results was similar to that of field data. Provided the real-time tidal currents and more accurate wind data are supported, more favorable results can be obtained.

  • PDF

Suspended Solid Dispersion Analysis for Coastal Areas Using Hybrid Concept of Particle and Concentration of Eulerian-Lagrangian Model (Eulerian-Lagrangian 농도 및 입자 결합모형에 의한 연안의 부유사 확산해석)

  • 서승원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • In order to simulate the coastal dispersion effectively, hybrid concept of operator split Eulerian-lagrangian concentration model and random-walk particle tracking model are developed. Especially the random-walk model is adequate for region with steep slope of concentration. According to model tests, it agrees perfectly with analytical solution on around the source point for therefore. ▽C $\geq$ 0.005, meanwhile it shows poor results for ▽C$\leq$0.002. trial modeling for real situation therefore, random-walk model is applied for near field henceforth Eulerian-Lagrangian concentration model is adoped for whole domain so that overall performance and accuracy can be achieved by using developed hybrid model.

  • PDF

A PARTICLE TRACKING MODEL TO PREDICT THE DEBRIS TRANSPORT ON THE CONTAINMENT FLOOR

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • An analysis model on debris transport in the containment floor of pressurized water reactors is developed in which the flow field is calculated by Eulerian conservation equations of mass and momentum and the debris particles are traced by Lagrange equations of motion using the pre-determined flow field data. For the flow field calculation, two-dimensional Shallow Water Equations derived from Navier Stokes equations are solved using the Finite Volume Method, and the Harten-Lax-van Leer scheme is used for accuracy to capture the dry-to-wet interface. For the debris tracing, a simplified two-dimensional Lagrangian particle tracking model including drag force is developed. Advanced schemes to find the positions of particles over the containment floor and to determine the position of particles reflected from the solid wall are implemented. The present model is applied to calculate the transport fraction to the Hold-up Volume Tank in Advanced Power Reactors 1400. By the present model, the debris transport fraction is predicted, and the effect of particle density and particle size on transport is investigated.

A Study on the Behavior of Floating Debris and Fresh Water Diffusion According to Discharge of Namgang Dam (남강댐방류에 따른 부유쓰레기의 거동 및 담수확산에 관한 연구)

  • Kim, Yeon-Joong;Yoon, Jung-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.37-46
    • /
    • 2009
  • Typhoon Rusa in 2002 was recorded as causing the biggest damage due to flood in our country. With the enormous damage to the land, the flood was totally discharged to the open sea. As a result, in the coastal area, the discharging of a river had a big influence in comparison to the scale of the coastal area, which suffered damaged due to the discharging of the river. As it cleared the land, the load was totally discharging into the sea, where it caused various problems due to its influence on the ecosystem. These included changes to the environment, like a difference in salinity and the inflow of a land load. Therefore, in this study, a Lagrangian particle tracking model was constructed using a flow model capable of solving the behavior of a river plume, supposing Sachon Bay. It is performed the research able to tendency-like valuation and reappearance about real event. The result was that the model was well approximated the sea area tendency and the river plume of the specific event.

A Pollutant Transport Model by the Forward-Tracking Method (전방추적법에 의한 오염물질의 전송 모델)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.37-44
    • /
    • 1998
  • In this study a new hybrid method is developed for solving flow-dominated transport problems accurately and effectively. The method takes the forward-tracking particle method for advection. However, differently from the random-walk Lagrangian approach it solves the diffusion process on the fixed Eulerian grids. Therefore, neither any interpolating algorithm nor a large enough number of particles is required. The method was successfully examined for both cases of instantaneous and continuous sources released at a point. Comparison with a surrounding 5-point Hermite polynomial method (Eulerian-Lagrangian method) and the random-walk pure Lagrangian method shows that the present method is superior in result accuracy and time-saving ability.

  • PDF

Simulation of Particle Beds with Combustion and Reduction in Steel Making Rotary Kilns (제철용 로터리 킬른 내의 연소 및 환원을 포함한 입자 거동 예측모사 해석)

  • Han, Woojoo;Jang, Kwonwoo;Han, Karam;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.173-175
    • /
    • 2015
  • We simulate the particle bed motions with combustion and reduction in steel making rotary kilns. The particle bed motions are simulated by a Lagrangian approach called Discrete Phase Model (DPM). To reduce the number of tracking particles, the Coarse Grain Model (CGM) was applied. The model for particle motions showed good agreements with experimental results. In addition to the particle motion, the combustion and reduction simulation was performed. The combustion and reduction simulation can consider heat, mass and momentum transfer between the gas phase and particle beds.

  • PDF

Tensorial Time Scales for Turbulent Gradient Transport of Reynolds Stresses (레이놀즈 응력의 난류구배수송을 위한 텐서시간척도)

  • Cho Choong Won;Kim Kyoungyoun;Sung Hyung Jin;Chung Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.687-695
    • /
    • 2005
  • On the notion that the Reynolds stresses are transported with different time scale depending on the transport direction, the third order velocity correlations are represented by a new turbulent gradient transport model with tonsorial Lagrangian time scale. In order to verify the proposed model, DNS data are first obtained in a turbulent channel flow at Re = 180 and tonsorial Lagrangian time scales are computed. The present model predictions are compared with DNS data and those predicted by the third-order turbulent transport model of Hanjalic and Launder that uses a scalar time scale. The result demonstrates that the Reynolds stresses are indeed transported with different time scale depending on the transport direction.