Journal of the Society of Naval Architects of Korea
/
v.41
no.1
/
pp.23-30
/
2004
In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.
A vorticity-velocity integro-differential formulation of incompressible Wavier-Stokes equations is described, focusing on a scheme for calculating pressure fields in application of the Lagrangian vortex method in connection with panel methods. It deals with the dynamic coupling among velocity, vorticity and pressure, and the Helmholtz decomposition of the velocity field, through a comparative study with the Eulerian finite volume method, we provide an extensive understanding of the Lagrangian vortex methods for numerical simulations of viscous flows around arbitrary bodies.
We present an improved Lagrangian vortex method in 2-D incompressible unsteady viscous flows, which is based on a mesh-free integral approach of the velocity-vorticity formulation. Vorticity fields are represented by discrete vortex blobs that are updated by the Lagrangian vorticity transport with the particle strength exchange scheme. Velocity fields are expressed in a form of the Helmholtz decomposition, which are calculated by a fast algorithm of the Biot-Savart integration with a smoothed kernel and by a well-established panel method. No-slip condition is enforced through viscous diffusion of vorticity from a solid body into field. The vorticity flux is determined in such a way that spurious slip velocity vanishes. Through the comparison with the existing finite volume scheme for the transient vortical flows around an impulsively started cylinder at Reynolds number Re=550, we would obtain a more accurate scheme for vortex methods in complicated flows.
Transactions of the Korean Society of Mechanical Engineers B
/
v.24
no.5
/
pp.733-743
/
2000
We solve the integral representation of the Navier-Stokes equations in a lagrangian view by tracking the particles, which have vortex strengths. We simulate the unsteady viscous flow around an impulsively started cylinder using the vortex particle method. Particles are advanced via the Biot-Savart law for a lagrangian evolution of particles. The particle strength is modified based on the scheme of particle strength exchange. The solid boundary satisfies the no-slip boundary condition by the vorticity generation algorithm. We newly modify the diffusion scheme and the boundary condition for simulating an unsteady flow efficiently. To save the computation time, we propose the mixed scheme of particle strength exchange and core expansion. We also use a lot of panels to ignore the curvature of the cylinder, and not to solve the evaluation of the surface density. Results are compared to those from other theoretical and experimental works.
Journal of Korean Society for Atmospheric Environment
/
v.9
no.E
/
pp.347-357
/
1993
The Lagrangian grid-free numerical method, the discrete vortex method, was applied to solve the Navier-Stokes euqations. This method avoids the introduction of numerical viscosity swamping the real physical viscosity at high Reynolds number, unlike Eulerian method, e.g. finite difference and element methods. The boundary integral equation method for the potential flow solution was included to make the discrete vortex method more feasible for complex geometries. The fast adaptive multipole expansion method was incorporated to reduce the computational time from $O(N^2)$ to O(N) for the computations of vortex-vortex interactions. The test problems were air flow around one circular cylinder and two circular cylinders in tandem with various gaps. The numerical results were in excellent gareement with the experimental and other computational results. The applicabilty of the method was discussed with the indoor and the outdoor air pollution problems, especially the contaminant transport in the recirculation regions.
In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.
Journal of the Society of Naval Architects of Korea
/
v.51
no.6
/
pp.480-488
/
2014
Vortex shedding which is the dominant feature of body wakes and of direct relevance to practical engineering problems, has been intensively studied for flows past a circular cylinder. In contrast, vortex shedding from a hydrofoil trailing edge has been studied to much less extent despite numerous practical applications. The physics of the problem is still poorly understood. The present study deals with $K{\acute{a}}rm{\acute{a}}n$ vortex shedding from a truncated trailing-edge hydrofoil in relatively high Reynolds number flows. The objectives of this paper are twofold. First, we aim to simulate unsteady turbulent flows past a two dimensional hydrofoil through a hybrid particle-mesh method and penalization method. The vortex-in-cell (VIC) method offers a highly efficient particle-mesh algorithm that combines Lagrangian and Eulerian schemes, and the penalization method enables to enforce body boundary conditions by adding a penalty term to the momentum equation. The second purpose is to investigate shedding frequencies of vortices behind a NACA 0009 hydrofoil operating at a zero angle of attack.
Transactions of the Korean Society of Automotive Engineers
/
v.4
no.3
/
pp.130-138
/
1996
The transient incompressible flow behind the widely-spaced co-axial jet is numerically simulated using the random vortex method(RVM). This numerical approach is based on the Lagrangian approach for the vorticity formulation of the unsteady Navier-Stokes equations, utilizing vortex elements to account for the convection and diffusion processes. The effects of the mass flow rate of an annular air jet and a central fuel jet on the co-axial jet flow dynamics is investigated. To validate the present procedure, the numerical results are compared with the available experimental data the present procedure, the numerical results are compared with the available experimental data in terms of the centerline and off-centerline profiles of the mean axial velocity. Discrepancies between the RVM results and the measurements are discussed in detail.
The Vortex-In-Cell(VIC) method combined with panel method is applied to the analysis of incompressible unsteady viscous flow. The dynamics of resulting flow is governed by the vorticity transport equation in Lagrangian form with vortex particle representation of the flow field. A regular grid which is independent to the shape of a body is used for numerical evaluation based on immersed boundary technique. With an introduction of this approach, the development and validation of the VIC method is presented with some computational results for incompressible viscous flow around two or three dimensional bodies such as wing section, sphere, finite wing and marine propeller.
Transactions of the Korean Society of Mechanical Engineers B
/
v.21
no.3
/
pp.350-357
/
1997
The transient incompressible flow behind the axisymmetric bluff body is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with a stochastic simulation of diffusion using random walk technique is employed to account for the transport processes of the vortex elements. The numerical solutions for 2-dimensional recirculating flow behind a backward-facing step in the laminar range of Reynolds number are compared with experimental data. The present simulation focuses on the transitional flow regime where the recirculation zone behind the bluff body becomes highly unsteady and large-scale vortex eddies are shed from the bluff body wake due to intrinsic shear layer instabilities. The unsteady vertical flow structures and the mixing characteristics behind the bluff body are discussed in detail.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.