• 제목/요약/키워드: Lagrangian Strain

검색결과 103건 처리시간 0.021초

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

보강된 쉘구조의 동적 비선형해석 (Dynamic Nonlinear Analysis of Stiffened Shell Structures)

  • 최명수;김문영;장승필
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.57-64
    • /
    • 2001
  • 보강된 판 및 쉘구조의 동적 비선형해석을 수행하기 위하여, 유한회전을 고려한 변형된 쉘유한요소를 이용하여 total Lagrangian formulation이 제시된다. 전단구속 (shear locking) 현상과 가상의 제로에너지 모우드를 동시에 제거하기 위하여 가정변형도 개념을 채용한다. 탄소성해석에서는 return mapping 미해rithm이 쉘구조의 붕괴 해석에 적용된다. Newmark 직접적분법을 사용하여 동하중 및 지진하중을 받는 쉘구조의 동적 비선형해석 결과를 제시한다.

  • PDF

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

선향적저감적분을 이용한 탄소성 유한요소법에 의한 블레이드의 성형 해석 (Analysis of Blade Forming using an Elasto-Plastic Finite Element Method with Directional Reduced Integration)

  • 최태훈;허훈
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.365-374
    • /
    • 1995
  • Numerical simulation of blade forming is carried out as stretch forming by an elasto-plastic finite element method. The method adopts a Lagrangian formulation, which incorporates large deformation and rotation, with a penalty method to treat the contact boundary condition. Numerical integration is done with a directional reduced integration scheme to avoid shear locking. The numerical results demonstrates various final shapes of blades which depend on the variation of the stretching force. The strain distributions in deformed blades are also obtained with the variation of the stretching force.

  • PDF

타이어 접지문제의 유한요소 응력해석 (Finite Element Analysis of the Tire Contact Problem)

  • 한영훈;김용희;허훈;곽윤근
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.820-830
    • /
    • 1989
  • 본 논문에서는 타이어의 각 부분의 물성치 계산을 위한 식을 유한요소법에 적용할 수 있도록 제안하였다. 이 식은 강철 코드의 굽힙효과를 고려 하였으며, 특히 각 요소에서 전단변형이 일어나는 동안의 굽힘효과를 고려하였다. 유한요소 공식화는 가상일의 원리에 의하여 평형 방정식으로부터 유도하였고, Updated refer- ence coordinate에 대해 증분해석을 적용하여 Updated Lagrangian공식화를 하였다. 그리고 차량하중에 의하여 타이어가 노면에 접지될때의 응력상태를 게산할 수 있도록 접촉문제 공식화를 유한요소 공식화에 첨가 하였다.

연강 판재에 대한 연강 구의 고속경사충돌 수치해석 (Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates)

  • 유요한;장순남;정동택
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

임의의 성형조건을 갖는 박판의 평면변형율 해석 (Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions)

  • 금영탁;이승열
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식 (The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids)

  • 서영태
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

임의 조건으로 성형되는 박판의 평면변형률 해석 (Plane Strain Analysis of Thin Sheet Forming with Arbitrary Conditions)

  • 금영탁;이승열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.201-212
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation of arbitrarily-shaped tool profiles and arbitrarily draw-in conditions is introduced. An implicit, incremental, updated Lagrangian formulation is employed, introducing a rigid-viscoplastic constitutive equation. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshe without depending on the explicit spatial derivatives of tool surfaces. The FEM formulation is tested in the sections automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains in the stretched section is obtained, but also the numerical stability of current formulation is verified in the two-side draw-in section.

  • PDF