• Title/Summary/Keyword: Lagrangian Scheme

Search Result 159, Processing Time 0.024 seconds

Comparative Study on Description Schemes to Perform Finite Element Analysis in Incremental Forming Process (점진성형의 공정평가를 위한 유한요소해석에서 묘사기법 적용에 관한 비교 연구)

  • Park, Jun-Soo;Byon, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1073-1080
    • /
    • 2012
  • Incremental forming is a cold working process in which a small part of the material is being deformed and the area of local deformation is moving over the entire material. In this paper, we study description schemes to perform finite element analysis for the incremental forming. The selected description schemes to examine are the Lagrangian description and the arbitrary Lagrangian-Eulerian (ALE) description. The sliding boundary scheme coupled with ALE is also examined to overcome the distortion problems of elements on the contact surface. Results show that the ALE description with the sliding boundary scheme is most favorable in overcoming the distortion of elements. This description leads to make the simulation continued to the final stage of the incremental forming. On the other hand, the Lagrangian description as well as the original ALE description makes the elements much distorted and the analysis is stopped long before arriving at the final shape of deformation.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Simulation of dynamic fracture and fluid-structure interaction in solid propellant rockets : Part 1 (theoretical aspects) (고체추진로켓 내부에서 발생하는 동적 파괴 현상과 유체-고체 상호작용의 시뮬레이션 - Part 1 (이론적 측면))

  • Hwang, Chan-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.286-290
    • /
    • 2008
  • This paper summarizes the components of an explicit aeroelastic solver developed especially for the simulation of dynamic fracture events occurring during the flight of solid propellant rockets. The numerical method combines an explicit Arbitrary Lagrangian Eulerian (ALE) version of the Cohesive Volumetric Finite Element (CVFE) scheme, used to simulate the spontaneous motion of one or more cracks propagating dynamically through a domain with regressing boundaries, and an explicit unstructured finite volume Euler code to follow the flow field during the failure event. A key feature of the algorithm is the ability to adaptively repair and expand the fluid mesh to handle the large geometrical changes associated with grain deformation and crack motion.

Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method (피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석)

  • Choi J. W.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

Large Displacement Dynamic Analysis with Frictional Contact by Linear Complementarity Formulation (선형 상보성 수식화를 이용한 마찰 접촉 대변형 동역학 문제의 해석)

  • Sung, Jae-Hyuk;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.674-679
    • /
    • 2001
  • For a large deformation nonlinear dynamic analysis of two-dimensional frictional contact, the linear complementarity formulation combined with a linearization is used. The solution procedure is based on the total Lagrangian formulation with a predictor and corrector scheme. For contact searching, a hierarchical scheme with a circular territory is used. A second-order approximation of displacements is used to detect impact time and position. The formulation is illustrated by means of numerical examples.

  • PDF

DIRECT NUMERICAL SIMULATION OF PARTICLE SUSPENSIONS IN A POLYMERIC LIQUID (미세입자분산 고분자 현탁액의 3차원 직접수치해석)

  • Hwang, W.R.;Hulsen, M.A.;Meijer, H.E.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.101-108
    • /
    • 2009
  • We present a new finite-element scheme for direct numerical simulation of particle suspensions in simple shear flow of a viscoelastic fluid in 3D. The sliding tri-periodic representative cell concept has been combined with DEVSS/DG finite element scheme by introducing constraint equations along the domain boundary. Rigid body motion of the freely suspended particle is described by the rigid-shell description and implemented by Lagrangian multipliers on particle boundaries. We present the bulk rheology of suspensions through the numerical examples of single-, two- and many-particle problems, which represent a large number of such systems in simple shear flow. We report the steady bulk viscosity and the first normal stress coefficient, which show shear-thickening behavior for both properties.

Parallel Contact Treatment and Parallel Performance of Impact Simulation Based on Lagrangian Scheme (Lagrangian 기법에 의한 충돌 해석 시 접촉처리의 병렬화 및 병렬효율 평가)

  • Back, Seung-Hoon;Kim, Seung-Jo;Lee, Min-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1447-1454
    • /
    • 2006
  • The evaluation of parallel performance of a high speed impact simulation is not an easy task because not only the development of parallel explicit code is difficult but also a large number of processors is not easily accessible. In this paper, the parallel performance of a new Lagrangian FEM impact code carried out on cluster supercomputer has been described in high speed range. In the case of metal sphere impacting to oblique plate, the overall speed-up continuously increases even up to 128 CPUs. Investigation of elapsed time of each part reveals that most of the inefficiency comes from the load imbalance of contact.

Lagrangian Investigation of Turbulent Channel Flow (I) - An Assessment of Particle Tracking Algorithms - (난류채널유동의 라그란지안 해석 (I)- 입자추적 알고리듬 평가 -)

  • Choi, Jung-Il;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.859-866
    • /
    • 2003
  • The Lagrangian dispserion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Fluid particle velocity and acceleration along a particle trajectory are computed by employing several interpolation schemes such as linear interpolation, high-order Lagrange polynomial interpolation and the Hermite interpolation schemes. The performances of the schemes are evaluated through comparison of errors in computed particle positions, velocities and accelerations against spectral interpolation. Adopting the four-point Hermite interpolation in the homogeneous directions and Chebyshev polynomials in the wall-normal direction appears to produce most reliable Lagrangian statistics including acceleration correlations with a reasonable amount of computational overhead.

Vessel Collision Analysis of an Underwater Soil Slope using Coupled Eulerian-Lagrangian Scheme 2: Parametric Study (Coupled Eulerian-Lagrangian 기법을 이용한 선박의 수중사면 충돌해석 2 : 매개변수연구)

  • Lee, Gyehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, parametric analyses are performed using the coupled Eulerian-Lagrangian scheme for the collision behaviors of a vessel and an underwater slope that constitutes part of an artificial protective island. The vessel parameters considered in the analysis are bow angle, stem angle, draft, and impact velocity. The gradient of the slope, the friction coefficient between the bow and the slope, and soil strength are considered as parameters of the slope. For each parameter, the dissipated collision energy and the collision force are estimated from the behavior of the vessel, and the energy dissipation mechanism is identified in terms of the ground deformation. The collision force is assumed as an exponential function, and the effects of the parameters are estimated. As a result, only two parameters, the gradient of the slope and the friction coefficient between the vessel and the soil, can affect the exponential coefficient of the function. The dissipated energy by the soil can thus be estimated adequately. The relationship between the volume of the soil pushed out by the bow and the dissipated collision energy is estimated as a linear function. This relationship is independent of the magnitude of the collision energy, and affected more by the friction coefficient and the soil strength than by the parameters of the vessel.

Nonlinear observer for flexible joint robots (유연한 관절 로보트에 대한 비선형 관측기)

  • 김윤재;임규만;함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.648-653
    • /
    • 1993
  • This paper presents an nonlinear observer scheme for flexible joint robot manipulators. This nonlinear observer scheme is based on the sliding mode method. Sliding controllers have recently been shown to feature excellent robustness and performance properties for specific classes of nonlinear tracking problems. Dynamic equations of flexible joint robot manipulators are derived from the Euler-Lagrange equations by forming the corresponding Lagrangian. Simulation results are presented to show the validness of the proposed nonlinear observer scheme.

  • PDF