• 제목/요약/키워드: Lagrange's Method

검색결과 205건 처리시간 0.024초

소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석 (Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive)

  • 이성진;홍순교;정영민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구 (A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane)

  • 김종대;오석형;김기호;오재윤
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

동해 봉길해안에서 해빈류의 현지 관측 (Field Observations of Wave-Induced Currents at Bonggil Beach)

  • 이영권;양해용;박일흠;이종섭;김종규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.145-150
    • /
    • 2004
  • Using the DGPS of high precision take in a bouy, the wave-induced currents were observed by Lagrange method at Bonggile beach of the East Sea. At June, the northward wave-induced currents were dominated by the SSW waves. And the southward flaws were appeared at September and November. When 0.2-0.4m wave heights attacked the beach, the mean speed of the wave-induced currents was 0.15-0.3m/s at June and September, when the 1.0-1.6m wave heights incidented at November, that was about 0.3-0.6m/s. On the other hand, the observed results were compared with the simulated results which were solved by the 2-D model, WICU-DIVAST. It was showed the reasonable agreements.

  • PDF

FIV Analysis for a Rod Supported by Springs at Both Ends

  • H. S. Kang;K. N. Song;Kim, H. K.;K. H. Yoon
    • Nuclear Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.619-625
    • /
    • 2001
  • An axial-flow-induced vibration model was proposed for a rod supported by two translational springs at both ends. For developing the model, a one-mode approximation was made based on the assumption that the first mode was dominant in vibration behavior of the single span rod. The first natural frequency and mode shape functions for the flow-induced vibration, called the FIV model were derived by using Lagrange's method. The vibration displacements at reactor conditions were calculated by the proposed model for the spring-supported rod and by the previous model for the simple-supported(55) rod. As a result, the vibration displacement for the spring-supported rod was larger than that of the 55 rod, and the discrepancy between both displacements became much larger as flow velocity increased. The vibration displacement for the spring-supported rod appeared to decrease with the increase of the spring constant. AS flow velocity increased, the increase rate of vibration displacement was calculated to go linearly up, and that of the rod having the short span length was larger than that of the rod having the long span length although the displacement value itself of the long span rod was larger than that of the short one.

  • PDF

듀얼-핑거의 안정적 파지 운동 제어에 관한 연구 (A Study on Stable Grasping Motion Control of Dual-Finger)

  • 엄혁;최종환;김승수;한현용;양순용;이진걸
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.81-88
    • /
    • 2005
  • This paper attempts to derive the dynamic model of handling tasks in finger robot which grasps stable and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, the roblems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. The effect of geometric constraints of area-contacts between the link's end-effector and the object is analyzed and the model based on the differential-algebraic equations is presented. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation and the experiment that the control system gives the performance improvement in the dynamic stable grasping and nimble manipulating of the dual fingers robot with soft tips.

Optimal Design of a High-Agility Satellite with Composite Solar Panels

  • Kim, Yongha;Kim, Myungjun;Kim, Pyeunghwa;Kim, Hwiyeop;Park, Jungsun;Roh, Jin-Ho;Bae, Jaesung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.476-490
    • /
    • 2016
  • This paper defines mode shape function of a composite solar panel assumed as Kirchhoff-Love plate for considering a torsional mode of composite solar panel. It then goes on to define dynamic model of a high-agility satellite considering the flexibility of composite solar panel as well as stiffness of a solar panel's hinge using Lagrange's theorem, Ritz method and the mode shape function. Furthermore, this paper verifies the validity of dynamic model by comparing numerical results from the finite element analysis. In addition, this paper performs a dynamic response analysis of a rigid satellite which includes only natural modes for solar panel's hinges and a flexible satellite which includes not only natural modes of solar panel's hinges, but also structural modes of composite solar panels. According to the results, we confirm that the torsional mode of solar panel should be considered for the structural design of high-agility satellite. Finally, we performed optimization of high-agility satellite for minimizing mass with solar panel's area limit using the defined dynamic model. Consequently, we observed that the defined dynamic model for a high-agility satellite and result of the optimal design are very useful not only because of their optimal structural design but also because of the dynamic analysis of the satellite.

일반 형상의 2차원 영역에서의 멀티스케일 웨이블렛-갤러킨 기법 (Multiscale Wavelet-Galerkin Method in General Two-Dimensional Problems)

  • 김윤영;장강원;김재은
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.939-951
    • /
    • 2002
  • We propose a new multiscale Galerkin method based on interpolation wavelets for two-dimensional Poisson's and plane elasticity problems. The major contributions of the present work are: 1) full multiresolution numerical analysis is carried out, 2) general boundaries are handled by a fictitious domain method without using a penalty term or the Lagrange multiplier, 3) no special integration rule is necessary unlike in the (bi-)orthogonal wavelet-based methods, and 4) an efficient adaptive scheme is easy to incorporate. Several benchmark-type problems are considered to show the effectiveness and the potentials of the present approach. is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析) (Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions)

  • 장석윤
    • 대한조선학회지
    • /
    • 제13권1호
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

흙의 실내(室內)다짐시험결과(試驗結果)에 대한 해석적(解析的)인 산정(算定)에 관한 연구(研究) (A Study on the Interpolation Methods for the Laboratory Compaction Test Results)

  • 이호춘
    • 대한토목학회논문집
    • /
    • 제12권2호
    • /
    • pp.169-175
    • /
    • 1992
  • 흙의 실내(室內)다짐시험(試驗)에서 최대건조밀도(最大乾操密度)와 최적함수비(最適含水比)를 결정(決定)하기 위하여 각국의 공업규격 등에 따라 다짐곡선(曲線)을 작도(作圖)하여 도상(圖上)에서 측정하고 있는 바 이에 소요되는 준비절차(節次)와 시간을 절약하고 수치계산으로 구할 수 있는 즉 Lagrange의 보간공식을 이용(利用)한 함수비(含水比)-건조밀도(乾燥密度) 관계식으로 다짐결과를 산정(算定)하는 본 연구의 방법이 다짐시공관리(施工管理)에 적용될 수 있는가 객관적으로 비교 검토(檢討)하기 위하여 종래의 방법으로 다짐결과가 결정(決定)되어 있는 기보고(旣報告)된 다짐시험실례(試驗實例)의 측정치에 대하여 다짐결과를 산정(算定) 및 비교고찰(比較考察)한 결과 간편하게 적용할 수 있다고 확인 되었으나 산정값의 정도(精度)는 차이를 나타내어 함수비의 변화폭에 따른 차이 등을 확인하여 정도에 대한 문제점을 종합 고찰하고자 2종의 시료에 대하여 함수비의 변화폭을 2% 정도로 유지하여 시험한 결과 두가지 방법에 의한 산정값이 더욱 접근하였으며 시험례(試驗例)를 포함한 비교에서 최대건조밀도(最大乾燥密度) 및 최적함수비(最適含水比) 산정(算定)값의 차이가 각각 $0.01g/cm^3$(0.5%) 및 0.4% 미만으로 나타나 일반적인 시공의 허용범위 및 다짐곡선상에서 측정할 수 있는 범위 이내라고 보아 정도(精度)에도 문제점이 없다고 판단되었다. 그러나 다짐곡선에서 시학적(視學的)으로 다짐상태를 비교(比較)할 수 있는 등의 전부를 만족할 수는 없어 종래의 방법과 병용하는 간이방법으로 활용될 수 있다고 판단된다.

  • PDF