• Title/Summary/Keyword: Lactococcus cremoris

Search Result 24, Processing Time 0.035 seconds

Effect of Germanium-132 on the Growth of Lactic Acid Bacteria (젖산균의 성장에 미치는 Ge-132의 영향)

  • Park, Seok-Kyu;Lee, Sang-Won;Takafumi Kasumi
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.506-513
    • /
    • 1999
  • The growth of lactic acid bacteria was investigated in liquid broth medium containing organic germanium compound(Ge-132, carboxyethylgermanium sesquioxide) in the range of 0.01 to 10mg/ml. Most of all lactic acid bacteria tested were tolerant and could grow better to the high Ge-132 concentration. However, the growth of Leuconostoc mesenteroides and Pediococcus pentosaceus were inhibited in the presence of 10mg/m1 Ge-132. Among 22 strains tested, lactic acid bacteria that were grown to a high degree(about 2 times) by addition of Ge-132 (10mg/ml)were Lactococcus lactis, Lc. cremoris, Lc. diacetilactis, Enterococcus faecium and Streptococcus faecalis. The growth of these strains were markedly accelerated in the culture medium supplemented with 1.omg/ml Ge-132 The optimal concentration of glucose for growth of Lc. lactic was found to be high in medium containing Ge-132 as compared with the case of control. During cultivation viscosity in culture broths of Lc. lactis and Lc. cremoris was rapidly elevated by adding Ge-132 to medium containing high concentration of glucose, and then decreased after incubation of long time. However, in the cultivation of Lc. diacetilactis, E, faecium and S. faecalis, viscosity of culture broths was not increased, even though Ge-132 was shown to be an effective stimulant of growth.

  • PDF

Selection of Lactic Starter for the Improvement of Jeungpyun Manufacturing Process (증편 제조공정 개설을 위한 스타터 선발)

  • Moon, Hye-Joon;Chang, Hak-Gil;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1241-1246
    • /
    • 1999
  • Jeungpyun has a unique sponge-like texture and sour taste imparted by the lactic acid and alcohol that are produced by the addition of Takju(turbid rice wine) as a starter. Its consumption, however. has been decreased due to the long preparation time, the difficulties in quality control and the offensive odor derived from the Takju. The present study was carried out in order to shorten the preparation time and to improve the quality of Jeungpyun. To achieve the objectives an appropriate commercial lactic acid starter was selected and a cofermentation system with yeast was developed. A starter containing Lactococcus lactis, Lactococcus cremoris and Lactococcus diacetylactis was selected based on the acid production rate and the quality of the produced sour taste. It took 3 hr for the lactic acid fermentation of rice slurry. The optimum addition levels of the lactic acid starter and yeast were 0.45% and 0.60%, respectively. The lactic acid fermented rice slurry was mixed with the rice slurry separately fermented for 2 hr by yeast, and cofermented for another 1 hr before steaming. Jeungpyun Prepared by the developed method was superior in quality to that Prepared by conventional method using Takju. The developed method reduced the preparation time more than 50% compared with the conventional method.

  • PDF

Utilization of Makgeolli sludge for growth of probiotic bacteria (Probiotic bacteria의 생장에 대한 막걸리슬러지의 이용)

  • Kim, Wan-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.473-477
    • /
    • 2011
  • A number of health benefits have been claimed for probiotic bacteria such as Bifidobacterium (B) spp. Lactobacillus(L) acidophilus, and Lactococcus(Lc) cremoris. Viability of probiotic bacteria is important in order to provide health benefits. Only a limited culture media for the test purpose of probiotic bacteria are commercially available (MRS broth), but the media for large-scale propagation of viable cells which are able to be used as food additive are not available. The manufacture of a low priced and preferred novel medium for probiotic bacteria was therefore, attempted using whey protein concentrate(WPC) and Makgeolli sludge as a starting material. The effect of WPC and Makgeolli sludge on the growth of four strains (B. bifidum 15696, B. longum 15707, L. acidophilus CH-2, and Lc. cremoris 20076) was investigated. Medium prepared such as WPC, Makgeolli sludge, and WPC+Makgeolli sludge(WPCMs). It was observed that the growth of 4 strains (B. bifidum 15696, B. longum 15707, L. acidophilus CH-2, and Lc. cremoris 20076) was stimulated by Makgeolli sludge, WPC, WPCMs. Especially, Viable cell number of 4 strains in the WPCMs were higher than that of the single media. These result suggest the possibility that Makgeolli and WPC, acts as a growth factor for the growth of probiotic bacteria.

Free Fatty Acid Accumulation by Mesophilic Lactic Acid Bacteria in Cold-Stored Milk

  • Coskun, Hayri;Ondul, Eda
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.133-138
    • /
    • 2004
  • This study was aimed to determine the accumulation of free fatty acid by mesophilic lactic acid bac-teria (Lactococcus lactis subsp. lactis 1471, Lactococcus lactis subsp. cremoris 1000 and Lactobacillus casei 111) in cold-stored milk. According to the results, all cold-stored milks had higher acid degree val-ues than those of fresh milk. This phenomenon showed that a slight increase occurred in the accumulation of free fatty acids as a result of spontaneous lipolysis during cold storage. All lactic acid bacteria showed good performance in production of titratable acidity, which increased during fermentation of the milk (fresh and stored milks). Moreover, as the storage time was prolonged, more free fatty acid accumulation was obtained from the fermentation of the cold-stored milk by the investigated lactic acid bacteria. The control milk, which was without lactic acid bacteria, showed no change in the accumulation of free fatty acid during fermentation. From this result, it can be suggested that longer cold-storage time can induce higher free fatty acid accumulation in milk by lactic acid bacteria.

Construction of a Lactococcal Shuttle/Expression Vector Containing a $\beta$-Galactosidase Gene as a Screening Marker (선별마커로써 $\beta$-Galactosidase 유전자를 포함한 Lactococcus용 셔틀/발현 벡터 제조)

  • Han Tae Un;Jeong Do-Won;Cho San Ho;Lee Jong-Hoon;Chung Dae Kyun;Lee Hyong Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.241-247
    • /
    • 2005
  • A new lactococcal shuttle/expression vector for lactococci, pWgal13T, was constructed using a $\beta$-galactosi-dase gene (lacZ) from Lacfococcus lactis ssp. lactis ATCC 7962 as a screening marker. The pWgal 13T was introduced into Escherichia coli DH5a and L. lactis MG1363, and was easily detected by the formation of blue colonies on a medium containing X-gal without any false transformants. Also, the quantitatively lacZ activity of pWgal13T was measured in L. lactis ssp. cremoris MG1363, and was found to be four times higher than that of L. lactis ssp. lactis ATCC7962 grown on a medium containing glucose, which shows that the lacZ gene of pWgal13T can be used for the efficient screening of L. lactis on general media. The pWgal13T was equipped with a lactococcal replicon of pWV01 from L. lactis Wg2, the new promoter P13C from L. lactis ssp. cremoris LM0230, multiple cloning sites, and a terminator for the expression of a relevant gene. The vee-tor pWgal13T was used for the expression of the EGFP gene in E. coli and L. lactis. These results show that the lactococcal expression/shuttle vector constructed in the present study can be used for the production of foreign proteins in E. coli and L. lactis.

Expression of manB Gene from Escherichia coli in Lactococcus lactis and Characterization of Its Bifunctional Enzyme, Phosphomannomutase

  • Li, Ling;Kim, Seul Ah;Fang, Ruosi;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1293-1298
    • /
    • 2018
  • Phosphomannomutase (ManB) converts mannose-6-phosphate (M-6-P) to mannose-1-phosphate (M-1-P), which is a key metabolic precursor for the production of GDP-D-mannose used for production of glycoconjugates and post-translational modification of proteins. The aim of this study was to express the manB gene from Escherichia coli in Lactococcus lactis subsp. cremoris NZ9000 and to characterize the encoded enzyme. The manB gene from E. coli K12, of 1,371 bp and encoding 457 amino acids (52 kDa), was cloned and overexpressed in L. lactis NZ9000 using the nisin-controlled expression system. The enzyme was purified by Ni-NTA column chromatography and exhibited a specific activity of 5.34 units/mg, significantly higher than that of other previously reported ManB enzymes. The pH and temperature optima were 8.0 and $50^{\circ}C$, respectively. Interestingly, the ManB used in this study had two substrate specificity for both mannose-1-phosphate and glucose-1-phosphate, and the specific activity for glucose-1-phosphate was 3.76 units/mg showing 70% relative activity to that of mannose-1-phosphate. This is the first study on heterologous expression and characterization of ManB in lactic acid bacteria. The ManB expression system constructed in this study canbe used to synthesize rare sugars or glycoconjugates.

Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

  • Li, Ling;Lee, Soo Jin;Yuan, Qiu Ping;Im, Wan Taek;Kim, Sun Chang;Han, Nam Soo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.412-418
    • /
    • 2018
  • Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors ${\beta}$-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific ${\beta}$-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.

Identification of the Cell-envelope Proteinase of Lactic Acid Bacteria Isolated from Kimchi. (김치 유래 젖산균의 Cell-envelope Proteinase 존재 확인)

  • 이유진;최재연;이형주;장해춘;김정환;정대균;김영석;김소미;이종훈
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.116-122
    • /
    • 2002
  • The partial 165 rDNA sequences of 6 lactic acid bacterial strains isolated from Kimchi were determined. Two strains were Leuconostoc mesenteroides and the rest were incorrectly classified and turned out to be Lactobacillus. As the case of dairy lactic acid bacteria, the strains isolated from Kimchi also had cell-envelope proteinase (CEP) activity. As the result of partial CEP gene amplification with CEP-specific primers, the expected 1.2-kb amplificate was obtained not from Leu. mesenteroides but from Lactobacillus strains. The deduced amino acid sequence of PCR product amplified from the genomic DNA of Lactobacillus pentosus KFR1821 showed 95% and 92% homology with those of PrtPs from Lactococcus lactis subsp. cremoris and Lactobacillus paracasei subsp. paracasei, respectively. The PCR amplificate was used as a probe and the result of Southern hybridization illuminated the location of CEP gene in chromosomal DNA of Lb. pentosus KFR1821.

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

Garlic Fermentation by Lactic Acid Bacteria

  • Kim, Yu-Sun;Baek, Hyung-Hee;Chung, Ill-Min;Kwon, Bin;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1279-1283
    • /
    • 2009
  • Garlic has been used for condiments and also for medicines to cure various diseases since ancient times. Many studies on the processing of garlic have been published, however, few of them were related with fermentation because of the antimicrobial action of the garlic. In this study, to conduct garlic fermentation, 4 lactic acid bacteria (LAB) strains with growth abilities in garlic medium were selected. Addition of various nitrogen, carbon, and mineral sources generally did not improve the growth of experimental strains during garlic fermentation except for Lactobacillus casei KFRI 704 by yeast extract and Lactococcus lactis subsp. cremoris ATCC 19257 by mineral sources. High performance liquid chromatography (HPLC) analysis of 32 phenolic compounds during fermentation showed that formononetin was decreased time dependently. The concentrations of volatile compounds and alliin did not change during fermentation. The results of this study would provide the basic understanding of garlic fermentation by selected strains of LAB.