• Title/Summary/Keyword: Lactobacillus farciminis

Search Result 5, Processing Time 0.019 seconds

Development of Species-Specific Primers for PCR Identification of Lactobacillus hilgardii and Lactobacillus farciminis in Kimchi

  • Lee, Myung-Ki;Ku, Kyung-Hyung;Kim, Young-Jin;Kim, Kyung-Hee;Kim, Yu-Ri;Yang, Hye-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.159-166
    • /
    • 2010
  • The aim of this study was to develop species-specific primer sets for kimchi Lactobacillus. Known gene sequences of Lactobacillus 16S rRNA were collected from the NCBI Gene bank, and 69 primer sets were designed using the homologous gene sequence. Six species of kimchi Lactobacilli were used as reference strains: Lactobacillus brevis KCTC3102, Lactobacillus farciminis KCTC3681, Lactobacillus fermentum KCTC3112, Lactobacillus hilgardii KCTC3500, Lactobacillus plantarum KCTC3099, and Lactobacillus sanfranciscensis KCTC3205. PCR amplification and gel electrophoresis were performed to identify the accuracy and specificity of the developed primer set. The results show that the primer set of 5'-aagcctgcgaaggcaag-3' & 5'-aggccaccggctttg-3', 5'-acatactatgcaaatctaagagattagacg-3' & 5'-actgagaatggctttaagagattagcttac-3' resulted in a specific PCR band on L. hilgardii, and primer set of 5'-ctaataccgcataacaactactttcacat-3' & 5'-aacttaataaaccgcctacattctctttac-3' on L. farciminis. The results indicate that the developed primer sets can provide a useful tool for the identification and differentiation of L. hilgardii and L. farciminis from other Lactobacillus species of kimchi.

Isolation and sequence analysis of a small cryptic plasmid from Lactobacillus farciminis KCTC3681 (Lactobacillus farciminis로부터 미지의 작은 플라스미드의 분리와 염기서열 분석)

  • Lee, Eun-Mo;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.53-57
    • /
    • 2008
  • From the extensive screening for small cryptic plasmid among about 23 lactic acid bacteria (LAB), 2.4 kb of cryptic plasmid was isolated from Lactobacillus farciminis strain KCTC 3681 and named as pLF24. The plasmid pLF24 was a circular molecule of 2,396 base-pairs in length with a G+C content of 38%. Two protein-coding sequences could be predicted. ORF1 and ORF2 showed homologies to plasmids of gram-positive bacteria. The replication protein coded by ORF2 and the plus origin, were similar to replication regions of other gram-positive bacteria as shown in plasmids such as pLH2, pLS141-1 and pLC2. The nucleotide sequence of pLF24 was deposited into Genbank data base with an accession number of EU429343. The newly isolated plasmid can be used for construction of shuttle vector in Lactobacillus bacteria.

  • PDF

Study of optimization of natural nitrite source production from spinach (시금치 유래 천연 아질산염 생산의 최적화 연구)

  • Kim, Tae-Kyung;Seo, Dong-Ho;Sung, Jung-Min;Ku, Su-Kyung;Jeon, Ki-Hong;Kim, Young-Boong;Choi, Yun-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.459-461
    • /
    • 2017
  • This study investigated the screening and optimization of nitrite production from fermented spinach extract using different lactic acid bacteria, fermentation temperature, and time. Spinach extract was fermented using various lactic acid bacteria at 24, 30, and $36^{\circ}C$ for 6, 12, 18, 24, 36, 48, 72, and 96 h in the presence of different carbohydrates (glucose, sucrose, fructose, and lactose). Lactobacillus farciminis (KCTC 3618) produced the highest amount of nitrite using fermented spinach extract at $30^{\circ}C$ for 28 h compared to Staphylococcus carnosus, L. coryniformis (KCTC 3167), L. fructosus (KCTC 3544), L. reuteri (KCTC 3677), L. amylophilus (KCTC 3160), L. hilgardii (KCTC 3500), L. delbrueckii (KCTC 1058), L. fermentum (KCTC 3112), L. plantarum (KCTC 3104), and L. brevis (KCTC 3498). Comparison of the yield at different fermentation temperatures showed that the highest amount of nitrite was produced using fermented spinach extract at $30^{\circ}C$. Similarly, maximum nitrite yield was observed after 36 h fermentationin in the presence of sucrose. Therefore, maximum nitrite production was observed upon L. farciminis-mediated fermentation of spinach extractat $30^{\circ}C$ for 36 h in the presence of sucrose.

Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses

  • CHIN HWA SUP;BREIDT FRED;FLEMING H. P.;SHIN WON-CHEOL;YOON SUNG-SIK
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2006
  • Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.

Edible Culture Media from Cereals and Soybeans for Pre-cultivation of Lactic Acid Bacteria (곡류 및 두류를 이용한 젖산균 전배양용 식용 배지의 제조)

  • Park, So-Lim;Park, Sunhyun;Jang, Jieun;Yang, Hye-Jung;Moon, Sung-Won;Lee, Myung-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.991-995
    • /
    • 2013
  • This study was conducted to develop an edible culture media with various types of cereals and soybeans for the pre-cultivation of lactic acid bacteria (LAB). To manufacture the edible culture media, LAB enrichment media were prepared using cereals such as brown rice (including germinated brown rice, glutinous brown rice, and germinated glutinous brown rice), yellow soybeans (including yellow soybeans, hulled yellow soybeans, germinated yellow soybeans, hulled and germinated yellow soybeans), and black soybeans (black soybeans, hulled black soybeans, germinated black soybeans, hulled and germinated black soybeans). Seven species of LAB were used in the experiment: Lactobacillus (Lb.) farciminis, Lb. homohiochii, Lb. pentosus, Lb. plantarum, Leuconostoc (Leu.) paramesenteroides, Leu. citreum, and Leu. lactis. For edible culture media from cereals, the average viable cell count of the seven starter cultures was 7.6~8.0 log CFU/mL, while that of the MRS culture medium, a synthetic medium, was 9.2 log CFU/mL; thus proliferation was lower by about 1~2 log CFU/mL in starter cultures from cereals compared to the synthetic medium. In the case of the edible culture media from soybeans, most bacteria showed higher proliferation in the hulled and germinated soybean media. In particular, Lb. plantarum showed the highest cell count at 10.08 log CFU/mL. In the case of edible culture media from black soybeans, the proliferation rate was higher in the hulled and germinated black soybean medium. Lb. homohiochii showed the highest proliferation in the hulled and germinated black soybean medium at 9.90 log CFU/mL. All results show that edible culture media using cereals and soybeans are generally good for LAB. Especially, hulled and germinated black soybeans are optimal for the pre-cultivation of LAB medium.