• Title/Summary/Keyword: Lachnospiraceae

Search Result 32, Processing Time 0.02 seconds

Complete genome sequence of Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) isolated from healthy Korean feces (건강한 한국인 분변으로부터 분리된 Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) 균주의 유전체 염기서열 초안)

  • Kim, Ji-Sun;Kang, Se Won;Han, Kook-Il;Lee, Keun Chul;Eom, Mi Kyung;Suh, Min Kuk;Kim, Han Sol;Lee, Ju Huck;Park, Seung-Hwan;Park, Jam-Eon;Oh, Byeong Seob;Yu, Seung Yeob;Choi, Seung-Hyeon;Ryu, Seoung Woo;Lee, Dong Ho;Yoon, Hyuk;Kim, Byung-Yong;Lee, Je Hee;Lee, Jung-Sook
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.289-292
    • /
    • 2019
  • Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) belonging to the class Clostridia in phylum Firmicutes, was isolated from a stool sample of a healthy Korean. Herein, we report the complete genome sequence of strain KGMB03038 analyzed using the PacBio Sequel platform. The genome comprises of 3,334,474 bp with G + C content of 47.8%, which includes 3,099 predicted protein-coding genes, 12 ribosomal RNAs, 54 transfer RNAs, and 4 ncRNAs. Genome analysis revealed that strain KGMB03038 possesses a number of genes involved in hydrolysis of carbohydrates, including mono-, di-, and oligo-saccharides, and biosynthesis of various amino acids.

Shrub coverage alters the rumen bacterial community of yaks (Bos grunniens) grazing in alpine meadows

  • Yang, Chuntao;Tsedan, Guru;Liu, Yang;Hou, Fujiang
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.504-520
    • /
    • 2020
  • Proliferation of shrubs at the expense of native forage in pastures has been associated with large changes in dry-matter intake and dietary components for grazing ruminants. These changes can also affect the animals' physiology and metabolism. However, little information is available concerning the effect of pastoral-shrub grazing on the rumen bacterial community. To explore rumen bacteria composition in grazing yaks and the response of rumen bacteria to increasing shrub coverage in alpine meadows, 48 yak steers were randomly assigned to four pastures with shrub coverage of 0%, 5.4%, 11.3%, and 20.1% (referred as control, low, middle, and high, respectively), and ruminal fluid was collected from four yaks from each pasture group after 85 days. Rumen fermentation products were measured and microbiota composition determined using Ion S5™ XL sequencing of the 16S rRNA gene. Principal coordinates analysis (PCoA) and similarity analysis indicated that the degree of shrub coverage correlated with altered rumen bacterial composition of yaks grazing in alpine shrub meadows. At the phyla level, the relative abundance of Firmicutes in rumen increased with increasing shrub coverage, whereas the proportions of Bacteroidetes, Cyanobacteria and Verrucomicrobia decreased. Yaks grazing in the high shrub-coverage pasture had decreased species of the genus Prevotellaceae UCG-001, Lachnospiraceae XPB1014 group, Lachnospiraceae AC2044 group, Lachnospiraceae FCS020 group and Fretibacterium, but increased species of Christensenellaceae R-7 group, Ruminococcaceae NK4A214 group, Ruminococcus 1, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005 and Lachnospiraceae UCG-008. These variations can enhance the animals' utilization efficiencies of cellulose and hemicellulose from native forage. Meanwhile, yaks grazed in the high shrub-coverage pasture had increased concentrations of ammonia nitrogen (NH3-N) and branched-chain volatile fatty acids (isobutyrate and isovalerate) in rumen compared with yaks grazing in the pasture without shrubs. These results indicate that yaks grazing in a high shrub-coverage pasture may have improved dietary energy utilization and enhanced resistance to cold stress during the winter. Our findings provide evidence for the influence of shrub coverage on the rumen bacterial community of yaks grazing in alpine meadows as well as insights into the sustainable production of grazing yaks on lands with increasing shrub coverage on the Qinghai-Tibet Plateau.

Effects of feeding different levels of dietary corn silage on growth performance, rumen fermentation and bacterial community of post-weaning dairy calves

  • Lingyan Li;Jiachen Qu;Huan Zhu;Yuqin Liu;Jianhao Wu;Guang Shao;Xianchao Guan;Yongli Qu
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.261-273
    • /
    • 2024
  • Objective: The objective of this study was to evaluate the growth performance, rumen fermentation parameters and bacterial community of post-weaning dairy calves in response to five diets varying in corn silage (CS) inclusion. Methods: A total of forty Holstein weaned bull calves (80±3 days of age;128.2±5.03 kg at study initiation) were randomized into five groups (8 calves/group) with each receiving one of five dietary treatments offered as total mixed ration in a 123-d feeding study. Dietary treatments were control diet (CON; 0% CS dry matter [DM]); Treatment 1 (T1; 27.2% CS DM); Treatment 2 (T2; 46.5% CS DM); Treatment 3 (T3; 54.8% CS DM); and Treatment 4 (T4; 67.2% CS DM) with all diets balanced for similar protein and energy concentration. Results: Results showed that calves offered CS had greater average daily gain, body length and chest depth growth, meanwhile altered rumen fermentation indicated by decreased rumen acetate concentrations. Principal coordinate analysis showed the rumen bacterial community structure was affected by varying CS inclusion diets. Bacteroidetes and Firmicutes were the predominant bacterial phyla in the calf rumens across all treatments. At the genus level, the abundance of Bacteroidales_RF16_group was increased, whereas Unclassified_Lachnospiraceae was decreased for calves fed CS. Furthermore, Spearman's correlation test between the rumen bacteria and rumen fermentation parameters indicated that Bacteroidales_RF16_group and Unclassified Lachnospiraceae were positively correlated with propionate and acetate, respectively. Conclusion: The results of the current study suggested that diet CS inclusion was beneficial for post-weaning dairy calf growth, with 27.2% to 46.5% CS of diet DM recommended to achieve improved growth performance. Bacteroidales_RF16_group and Unclassified Lachnospiraceae play an important role in the rumen fermentation pattern for post-weaning calves fed CS.

Diversity of Butyrivibrio Group Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil

  • Zhu, Zhi;Hang, Suqin;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • This study aimed to investigate the diversity of the Butyrivibrio group bacteria in goat rumen and its response to garlic oil (GO) supplementation as revealed by molecular analysis of cloned 16S rRNA genes. Six wethers fitted with ruminal fistulas were assigned to two groups for a cross-over design with 28-d experimental period and 14-d interval. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents were used for DNA extraction collected before morning feeding on d 28. A total bacterial clone library was firstly constructed by nearly full-length 16S rRNA gene cloned sequences using universal primers. The resulting plasmids selected by Butyrivibrio-specific primers were used to construct a Butyrivibrio group-specific bacterial clone library. Butyrivibrio group represented 12.98% and 10.95% of total bacteria in control and GO group, respectively. In libraries, clones were classified to the genus Pseudobutyrivibrio, Butyrivibrio and others within the family Lachnospiraceae. Additionally, some specific clones were observed in GO group, being classified to the genus Ruminococcus and others within the family Ruminococcaceae. Based on the criterion that the similarity was 97% or greater with database sequences, there were 29.73% and 18.42% of clones identified as known isolates (i.e. B. proteoclasticus and Ps. ruminis) in control and GO groups, respectively. Further clones identified as B. fibrisolvens (5.41%) and R. flavefaciens (7.89%) were specifically found in control and GO groups, respectively. The majority of clones resembled Ps. ruminis (98% to 99% similarity), except for Lachnospiraceae bacteria (87% to 92% similarity) in the two libraries. The two clone libraries also appeared different in Shannon diversity index (control 2.47 and GO group 2.91). Our results indicated that the Butyrivibrio group bacteria had a complex community with considerable unknown species in the goat rumen.

The Differences between Luminal Microbiota and Mucosal Microbiota in Mice

  • Wu, Minna;Li, Puze;Li, Jianmin;An, Yunying;Wang, Mingyong;Zhong, Genshen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • The differences between luminal microbiota (LM) and mucosal microbiota (MAM) were little known, especially in duodenum. In this study, LM and MAM in colon and duodenum of mice were investigated through 16S rRNA high-throughput sequencing. The lowest bacterial diversity and evenness were observed in duodenal LM (D_LM), followed by duodenal MAM (D_MAM). Meanwhile, the bacterial diversity and evenness were obviously increased in D_MAM than these in D_LM, while no significant difference was observed between colonic MAM (C_MAM) and colonic LM (C_LM). PCoA analysis also showed that bacterial communities of LM and MAM in duodenum were completely separated, while these in colon overlapped partly. The ratio of Firmicutes to Bacteroidetes (F/B) in D_MAM was significantly higher than that in D_LM. Lactobacillus was largely enriched and was the characteristic bacteria in D_LM. The characteristic bacteria in D_MAM were Turicibacter, Parasutterella, Marvinbryantia and Bifidobacterium, while in C_LM they were Ruminiclostridium_6, Ruminiclostridium_9, Ruminococcaceae_UCG_007 and Lachnospiraceae_UCG_010, and in C_MAM they were Lachnospiraceae_NK4A136, Mucispirillum, Alistipes, Ruminiclostridium and Odoribacter. The networks showed that more interactions existed in colonic microbiota (24 nodes and 74 edges) than in duodenal microbiota (17 nodes and 29 edges). The 16S rDNA function prediction results indicated that bigger differences of function exist between LM and MAM in duodenum than these in colon. In conclusion, microbiota from intestinal luminal content and mucosa were different both in colon and in duodenum, and bacteria in colon interacted with each other much more closely than those in duodenum.

Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis

  • Wang, Jin;Fan, Huan;Han, Ye;Zhao, Jinzhao;Zhou, Zhijiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.100-110
    • /
    • 2017
  • Objective: The gastrointestinal tract of sheep contain complex microbial communities that influence numerous aspects of the sheep's health and development. The objective of this study was to analyze the composition and diversity of the microbiota in the gastrointestinal tract sections (rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, and rectum) of sheep. Methods: This analysis was performed by 454 pyrosequencing using the V3-V6 region of the 16S rRNA genes. Samples were collected from five healthy, small tailed Han sheep aged 10 months, obtained at market. The bacterial composition of sheep gastrointestinal microbiota was investigated at the phylum, class, order, family, genus, and species levels. Results: The dominant bacterial phyla in the entire gastrointestinal sections were Firmicutes, Bacteroidetes, and Proteobacteria. In the stomach, the three most dominant genera in the sheep were Prevotella, unclassified Lachnospiraceae, and Butyrivibrio. In the small intestine, the three most dominant genera in the sheep were Escherichia, unclassified Lachnospiraceae, and Ruminococcus. In the large intestine, the three most dominant genera in the sheep were Ruminococcus, unclassified Ruminococcaceae, and Prevotella. R. flavefaciens, B. fibrisolvens, and S. ruminantium were three most dominant species in the sheep gastrointestinal tract. Principal Coordinates Analysis showed that the microbial communities from each gastrointestinal section could be separated into three groups according to similarity of community composition: stomach (rumen, reticulum, omasum, and abomasum), small intestine (duodenum, jejunum, and ileum), and large intestine (cecum, colon, and rectum). Conclusion: This is the first study to characterize the entire gastrointestinal microbiota in sheep by use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the gastrointestinal bacterial community of sheep.

Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice

  • Garcia-Mazcorro, Jose F.;Pedreschi, Romina;Chew, Boon;Dowd, Scot E.;Kawas, Jorge R.;Noratto, Giuliana
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1247-1259
    • /
    • 2018
  • Raspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.

Aging effects on the diurnal patterns of gut microbial composition in male and female mice

  • Kim, Hyun-Jung;Moon, Chang Mo;Kang, Jihee Lee;Park, Eun-Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.575-583
    • /
    • 2021
  • Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.

The Synergism of Human Lactobacillaceae and Inulin Decrease Hyperglycemia via Regulating the Composition of Gut Microbiota and Metabolic Profiles in db/db Mice

  • Peifan Li;Tong Tong;Yusong Wu;Xin Zhou;Michael Zhang;Jia Liu;Yongxin She;Zuming Li;Yongli Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1657-1670
    • /
    • 2023
  • This study aimed to evaluate the effects of Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from human feces coordinating with inulin on the composition of gut microbiota and metabolic profiles in db/db mice. These supplements were administered to db/db mice for 12 weeks. The results showed that the Lactobacillaceae coordinating with inulin group (LI) exhibited lower fasting blood glucose levels than the model control group (MC). Additionally, LI was found to enhance colon tissue and increase the levels of short-chain fatty acids. 16S rRNA sequencing revealed that the abundance of Corynebacterium and Proteus, which were significantly increased in the MC group compared with NC group, were significantly decreased by the treatment of LI that also restored the key genera of the Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ruminococcus_gnavus_group, Desulfovibrio, and Lachnospiraceae_UCG-006. Untargeted metabolomics analysis showed that lotaustralin, 5-hydroxyindoleacetic acid, and 13(S)-HpODE were increased while L-phenylalanine and L-tryptophan were decreased in the MC group compared with the NC group. However, the intervention of LI reversed the levels of these metabolites in the intestine. Correlation analysis revealed that Lachnoclostridium and Ruminococcus_gnavus_group were negatively correlated with 5-hydroxyindoleacetic acid and 13(S)-HpODE, but positively correlated with L-tryptophan. 13(S)-HpODE was involved in the "linoleic acid metabolism". L-tryptophan and 5-hydroxyindoleacetic acid were involved in "tryptophan metabolism" and "serotonergic synapse". These findings suggest that LI may alleviate type 2 diabetes symptoms by modulating the abundance of Ruminococcus_gnavus_group and Lachnoclostridium to regulate the pathways of "linoleic acid metabolism", "serotonergic synapse", and" tryptophan metabolism". Our results provide new insights into prevention and treatment of type 2 diabetes.

Effects of Beech-wood Creosote on Intestinal Microflora in Rat (너도밤나무 크레오소트가 흰 쥐의 장내 미생물 변화에 미치는 영향)

  • Kim, Jeong A;Yu, Da Yoon;Kim, In Sung;Lee, Chul Young;Jeong, Dong Kee;Lee, Sang Suk;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.849-856
    • /
    • 2018
  • Diarrhea is one of the main disorders which cause the highest level mortality of the post-weaning economic animal. Beech-wood creosote has been used as a traditional anti-diarrheic medicament for a long time. The present study was conducted to investigate the effects of dietary supplementation of Beech-wood on growth performance and intestinal microbiota in rats. Twelve 4-week-old rats were randomly assigned to one of four dietary groups and fed a basal diet supplemented with none (CON), 0.5% apramycin (ANTI), 0.4% creosote (Creo 0.4), or 0.8% creosote (Creo 0.8) for 4 weeks following 1 week of adaptation period to the respective diet. Average daily gain was not influenced by the dietary treatment whereas average daily feed intake was greatest for the Creo 0.8 group. In the intestinal microbiota at the level of the phylum, the percentage of Firmicutes bacteria decreased but Bacteroidetes increased in the Creo 0.8 group vs. Control, which resulted in a decreased F/B ratio for the former (p<0.05). Moreover, the percentage of Lachnospiraceae was greater at the level of the family for the Creo 0.8 group than for Control, but the percentages of Turicibacter and Clostridium disporicum were less in the former (p<0.01) at the genus and species levels, respectively. Collectively, the present results indicate that dietary supplementation of creosote increases the feed intake and also influence the intestinal microbiota in rats.