• Title/Summary/Keyword: Laboratory measurement

Search Result 1,944, Processing Time 0.036 seconds

Evaluation of Analyzer and Measurement Conditions of Blood Ammonia (혈중 암모니아의 측정조건과 분석기기의 평가)

  • Kim, Sang-Su;Kim, Myong Soo;Lee, Seung Mo;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.68-73
    • /
    • 2016
  • Ammonia is very toxic, and causes neuronal damage via excitotoxicity, oxidative stress, and inflammation. Because the liver is the primary organ for ammonia metabolism, compromised liver function can result from inborn errors of metabolism. Measurement of blood ammonia has some limitations. Recently, several laboratories examined possible concurrent increases in plasma ammonia. However, the collection, handling, storage, and analysis of blood samples are all potential sources of error. For evaluation of rapidity and reliability of measurement of blood ammonia, the DRI-CHEM 100 (Fuji Film Co., Japan) and COBAS 8000 (Roche Diagnostic Ltd., Switzerland) analyzer were used for analysis of ammonia level values. The results of this study detected a high correlation between analyzer. Therefore, one-step measurement was suitable for ammonia analysis. After sampling of the ammonia in the time slot for measurement an increase to 46.5, 57.4, and 79.0 (${\mu}g/dL$) was observed at 30, 90, and 180 minutes. In addition, specific capacity of the ammonia, 7, 10, and 13 (${\mu}L$), was measured as 39, 46, and 43 (${\mu}g/dL$), respectively, and the FDC-100 analyzer was more effective in $10{\mu}L$ (p<0.001). In conclusion, the evaluated analysis may offer useful information for clinical application.

Evaluation of the Model Accuracy according to Three Types of Dental Scanner (세 가지 방식의 스캐너 종류에 따른 모형 정확도 평가)

  • Lee, Jae-Jun;Park, Jin-Young;Bae, So-Yeon;Jeon, Jin-Hun;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.226-231
    • /
    • 2015
  • The purpose of this study was to evaluate the accuracy of model according to three types of dental scanner. A maxillary acrylic model was prepared and duplicated 10 times by silicone impression materials. Corresponding working casts were formed from scannable stone and got a 3-dimensional digital models using three different scanners. The distance of each measurement region was measured using vernier calipers and the respective program. One-way ANOVA and the Tukey honestly significant difference post hoc test (${\alpha}=0.05$) was performed using IBM SPSS Statistics 21.0. Overall, the stone cast is smaller than the digital models in measurement distance. And measuring point value of laser scanner showed the most similar values and measurement points value of digital vernier calipers. Digital model of white light scanner showed similar values in the measurement points value of the blue light scanner. In conclusion, the laser scanner showed the best accuracy among the three types of dental scanner. However, the difference between the digital models and the stone cast can be accommodated in making prostheses. Thereby, three types of dental scanner are available in a clinically acceptable range.

Analytics of PIV Measurement and Its Application for Higher Performances

  • NISHIO Shigeru;SUGII Yasuhiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.62-74
    • /
    • 2001
  • Present paper describes the principles of PIV measurement approaching from the analytical view, which enables to explain the general form of principles covering all the PIV measurement, and that gives theoretical basis for its higher measurement performances. The explanation of the measurement principles started from the definition of governing equation in differential form as same as the gradient method, and the integral along the particle path line was executed to show the principle of the correlation method with same basis. The integral processes clearly shows the analytical reason why the correlation peak gives the terminal point of path line, and how the effects of deformation and rotation of fluid appears in the correlation map. These results have no differences from our experiences and understandings of the conventional PIV measurement definition in final form. However, the analytical approach enable to understand those facts a priori, and it makes easy to achieve the innovative higher performances of measurement. Analytical explanation clearly shows the behavior of the residual errors caused by the fluid motion, and it enables to analyze the measurement uncertainty theoretically.

  • PDF

Parameter Estimation by OE model of DC-DC Converter System for Operating Status Diagnosis

  • Jeon, Jin-Hong;Kim, Tae-Jin;Kim, Kwang-Su;Kim, Kwang-Hwa
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.206-210
    • /
    • 2004
  • This paper deals with a parameter estimation of the DC-DC converter system for its diagnosis. Especially, we present the results of parameter estimation for the DC-DC converter model by the system identification method. The parameter estimation for the DC-DC converter system aims at the diagnosis of its operating status. For the operating status diagnosis of the DC-DC converter system, we assume that the DC-DC converter system is an equivalent model of the Buck converter and estimate the main parameter for on-line diagnosis. In addition, for verification of an estimated parameter, we compare a bode plot of the estimated system transfer function and measurement results of the HP4194 instrument. It is a control system analyzer for system transfer function measurement. Our results confirm that the main parameter for diagnosis of the DC-DC converter system can be estimated by the system identification method and that the aging status of the system can be predicted by these results on operating status.

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer

  • Liang, Qinqin;YanYang, YanYang;Zhang, Junxi;Yuan, Xujie;Chen, Qimeng
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2018
  • The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.

Temperature distribution analysis of steel box-girder based on long-term monitoring data

  • Wang, Hao;Zhu, Qingxin;Zou, Zhongqin;Xing, Chenxi;Feng, Dongming;Tao, Tianyou
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.593-604
    • /
    • 2020
  • Temperature may have more significant influences on structural responses than operational loads or structural damage. Therefore, a comprehensive understanding of temperature distributions has great significance for proper design and maintenance of bridges. In this study, the temperature distribution of the steel box girder is systematically investigated based on the structural health monitoring system (SHMS) of the Sutong Cable-stayed Bridge. Specifically, the characteristics of the temperature and temperature difference between different measurement points are studied based on field temperature measurements. Accordingly, the probability density distributions of the temperature and temperature difference are calculated statistically, which are further described by the general formulas. The results indicate that: (1) the temperature and temperature difference exhibit distinct seasonal characteristics and strong periodicity, and the temperature and temperature difference among different measurement points are strongly correlated, respectively; (2) the probability density of the temperature difference distribution presents strong non-Gaussian characteristics; (3) the probability density function of temperature can be described by the weighted sum of four Normal distributions. Meanwhile, the temperature difference can be described by the weighted sum of Weibull distribution and Normal distribution.